

It's All About Density Lab Station 1 — Clear Liquid I

Materials at Station

Clear Liquid I, 150 mL Balance Beaker, 250-mL (to hold liquid) Graduated cylinders, 100-mL, 2 Paper towels

Procedure

- 1. Place a dry 100-mL graduated cylinder on a balance and record the mass in grams (to the nearest .01 g).
- 2. Carefully pour approximately 60 mL of the Clear Liquid I into the graduated cylinder.
- 3. Mass the graduated cylinder again (with the added liquid) and record the mass in grams (to the nearest .01 g).
- 4. Place the graduated cylinder on the tabletop. Read the actual volume of liquid to the nearest tenth of a milliliter. Record this volume.
- 5. Pour the liquid back into the beaker and thoroughly dry the graduated cylinder.

It's All About Density Lab Station 2 — Clear Liquid II

Materials at Station

Clear Liquid II, 20 mL Beaker, 100-mL (to hold liquid) Graduated cylinders, 10-mL, 2 Pipets, 2 Balance Paper towels

Procedure

- 1. Place a *dry* 10-mL graduated cylinder on a balance and record the mass in grams (to the nearest .01 g).
- 2. Carefully pour approximately 9 mL of the Clear Liquid II into the graduated cylinder. Use a pipet, if necessary.
- 3. Mass the graduated cylinder again (with the added liquid) and record the mass in grams (to the nearest .01 g).
- 4. Place the graduated cylinder on the tabletop. Read the actual volume of liquid to the nearest tenth of a milliliter. Record this volume.
- 5. Pour the liquid back into the beaker. Rinse and thoroughly dry the graduated cylinder.

© 2018, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

It's All About Density Lab Station 3 — White Block

Materials at Station

White blocks, 2 Metric rulers, 2 Balance

Procedure

- 1. Use a metric ruler to measure the length, width, and height of the white block (to the nearest .01 cm). Record these measurements in the data table.
- 2. Place the white block on the balance and read the mass. Record the mass in grams (to the nearest .01 g).

It's All About Density Lab Station 4 — Foam Block

Materials at Station

Foam blocks, 2 Metric rulers, 2 Balance

Procedure

- 1. Use a metric ruler to measure the length, width, and height of the foam block (to the nearest .01 cm). Record these measurements in the data table.
- 2. Place the foam block on the balance and read the mass. Record the mass in grams (to the nearest .01 g).

It's All About Density Lab Station 5 — Rubber Stopper

Materials at Station

Rubber stoppers, 2 Graduated cylinders, 100-mL, 2 Tap water Balance Paper towels

Procedure

- 1. Place the rubber stopper on the balance and read the mass. Record the mass in grams (to the nearest .01 g).
- 2. Fill a 100-mL graduated cylinder with approximately 50 mL of tap water. Read the volume to the nearest tenth and record the volume in mL in the data table.
- 3. Carefully—and without splashing water out of the cylinder—add the rubber stopper to the graduated cylinder by angling the cylinder and slowly sliding the stopper down the side.
- 4. Read the new volume (water plus rubber stopper) to the nearest tenth. Record the volume in mL in the data table.
- 5. Pour the water down the drain and dry off the rubber stopper.

It's All About Density Lab Station 6 — Glass Sphere

Materials at Station

Glass spheres, 2 Beaker or cup (to hold spheres) Metric rulers, 2 Balance

Graduated cylinders, 100-mL, 2 Tap water Paper towels

Procedure. Using Water Displacement Method Technique

- 1. Place the glass sphere on the balance and read the mass. Record the mass in grams (to the nearest .01 g).
- 2. Fill a 100-mL graduated cylinder with approximately 50 mL of tap water. Read the volume to the nearest tenth and record the volume in mL in the data table.
- 3. Carefully—and without splashing water out of the cylinder—add the sphere to the graduated cylinder by angling the cylinder and slowly sliding the sphere down the side.
- 4. Read the new volume (water plus sphere) to the nearest tenth. Record the volume in mL in the data table.
- 5. Pour the water down the drain and dry off the sphere.

Procedure. Using Linear Measurement Technique

6. Use a metric ruler to measure the diameter of the sphere (to the nearest .01 cm). Record this measurement in the data table. © 2018 Flinn Scientific, Inc. All Rights Reserved. 3

It's All About Density Lab Station 7 — Metal Cylinder

(Note: Perform both procedures for comparison purposes.)

Materials at Station

Metal cylinders, 2 Graduated cylinders, 100-mL, 2 Tap water Metric rulers, 2 Balance Paper towels

Procedure. Using Water Displacement Method Technique

- 1. Place the metal cylinder on the balance and read the mass. Record the mass in grams (to the nearest .01 g).
- 2. Fill a 100-mL graduated cylinder with ~50 mL of tap water. Read the exact volume to the nearest tenth and record the volume in mL in the data table.
- 3. Carefully—and without splashing water out of the cylinder—add the metal cylinder to the graduated cylinder by angling the cylinder and slowly sliding it down the side. (*Note:* Do not drop the metal piece into the graduated cylinder to avoid cracking the glass.)
- 4. Read the new volume (water plus the metal cylinder) to the nearest tenth. Record the volume in mL in the data table.
- 5. Pour the water down the drain and dry off the metal cylinder.

Procedure. Using Linear Measurement Technique

6. Use a metric ruler to measure the diameter and height of the cylinder (to the nearest .01 cm). Record these measurements in the data table.