

Titration: Identifying the Concentration of an Acid Worksheet

Standardization Data Table

Trial 1	Trial 2	Trial 3
	Trial 1	Trial 1 Trial 2

Molarity NaOH (average) _____ M

Unknown Concentration Data Table:

Unknown #	Trial 1	Trial 2	Trial 3 (optional)
Volume of acid, mL			
Final volume of NaOH in the buret, mL			
Initial volume of NaOH in the buret, mL			
Volume of NaOH added, mL			
	2.6		

Concentration of Unknown (average) _____M

Post-Lab Questions and Calculations (Answer on a separate sheet of paper.)

- 1. From the standardization data, calculate the molarity of the sodium hydroxide solution for each trial. Average the values and enter the molarity of NaOH average above.
- 2. From the unknown concentration data, calculate the molarity of the hydrochloric acid solution for each trial. Average the values and enter the concentration of unknown acid average above.
- 3. Why must the KHP samples be dried? If they are not dried, how would the results change (high or low)?
- 4. Why must the NaOH be standardized? Why can't an exact solution of NaOH be prepared?