FLINN SCIENTIFIC

Data Tables

Part 1. pH of Acetic Acid-Sodium Acetate Buffer

mL of 0.2 M HCl added	pH		mL of 0.2 M	pH	
	actual	calc.	NaOH added	actual	calc.
0			0		
1.0			1.0		
2.0			2.0		
3.0			3.0		
4.0			4.0		
5.0			5.0		
6.0			6.0		
7.0			7.0		
8.0			8.0		
9.0			9.0		
10.0			10.0		

Part 2. pH of Ammonia-Ammonium Chloride Buffer

mL of 0.2 M HCl added	pH		mL of 0.2 M	pH	
	actual	calc.	NaOH added	actual	calc.
0			0		
1.0			1.0		
2.0			2.0		
3.0			3.0		
4.0			4.0		
5.0			5.0		
6.0			6.0		
7.0			7.0		
8.0			8.0		
9.0			9.0		
10.0			10.0		

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Part 3

mL of 0.1 M CH ₃ COOH	mL pH5.00	(calc.)
mL of 0.1 M NaCH ₃ COO	mL pH	(actual)

Calculations

- 1. Using Equation 4 on page 2, calculate the pH of the Part 1 acetic acid–sodium acetate buffer solution before and after 1.0 mL of 0.2 M HCl solution is added to the buffer. K_a of acetic acid equals 1.8×10^{-5} . Enter this values in the Part 1 Data Table.
- 2. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M HCl added to the buffer. Enter these values in the Part 1 Data Table.
- 3. When strong base is added to a buffer of a weak acid–conjugate base, the acid reacts with the base to form water and its conjugate base.

$$HA(aq) + OH^{-}(aq) \rightarrow H_2O(l) + A^{-}(aq)$$

Calculate the pH of the Part 1 acetic acid–sodium acetate buffer solution after 1.0 mL of the 0.2 M NaOH solution is added to the buffer. Enter this value in the Part 1 Data Table.

- 4. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M NaOH added to the buffer. Enter these values in the Part 1 Data Table.
- 5. The ammonia–ammonium chloride buffer solution is a weak base–conjugate acid buffer solution. K_b for NH₃ equals 1.8 × 10⁻⁵. Using Equation 4 on page 2 and the relationship;

- calculate the pH of the ammonia–ammonium chloride buffer solution after 1.0 mL of 0.2 M HCl is added to the buffer solution. The initial moles of both NH₃ and NH₄Cl in 50 mL of the buffer solution are 0.0025 moles. Record the pH value in the Part 2 Data Table. [NH₃(aq) + H₃O⁺(aq) \rightarrow NH₄⁺(aq) + H₂O(l).]
- 6. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M HCl added to the buffer. Enter these values in the Part 2 Data Table.
- 7. Repeat the pH calculations for each 1.0 mL increment of 0.2 M NaOH added to the ammonia–ammonium chloride buffer solution. Enter these values in the Part 2 Data Table.

Post-Lab Questions

- 1. Calculate the pH change when of 1 mL of 0.2 M HCl is added to 50 mL of deionized water. How does this pH value change compare to those obtained when 1 mL of 0.2 M HCl is added to the buffers?
- 2. At what point did each of the buffers lose their effectiveness? Explain.

2