Buffering of Lakes
Buffers and Environmental Chemistry

Introduction
Acid rainfall causes deleterious effects to our environment. It can be especially harmful to the ecosystems of lakes and streams. Help students discover natural defenses that allow lakes and streams to maintain pH.

Concepts
- Acid rain
- Buffers
- Acid–base indicators
- Water quality

Materials
Marble chips (calcium carbonate, CaCO$_3$), 150 g
Sulfuric acid, H$_2$SO$_4$, 0.1 M, 3–5 mL
Universal indicator solution, 3 mL
Water, distilled or deionized
Beaker, 250-mL
Beaker, 400-mL
Glass demonstration tube, 2 cm × 60 cm
Cotton balls, 3
Graduated cylinder, 10-mL
Pipets, Beral-type, or eyedroppers, 3
Rubber stopper (2-hole) to fit tube, size 2
Stirring rod
Support stand and buret clamp

Safety Precautions
Dilute sulfuric acid solution is corrosive to eyes, skin and other tissue—avoid contact of all chemicals with eyes and skin. Wear chemical splash goggles, a chemical-resistant apron, and chemical-resistant gloves. Please consult current Material Safety Data Sheets for additional safety, handling and disposal information.

Preparation
Part A. Constructing the Column
1. Place three cotton balls loosely bunched into one end of the long glass demonstration tube. Stopper this end of the demonstration tube with a two-hole rubber stopper.
2. Fill the glass demonstration tube about three-quarters full with 150 g of marble chips.
3. Using a single buret clamp, attach the demonstration tube vertically to a support stand so that the stoppered end of the tube is at the bottom and the open end is at the top.
4. Place a 250-mL beaker under the stoppered end of the tube. Rinse the column of marble chips with tap water until the water leaving the column is clear (not cloudy), then rinse the column a second time with distilled or deionized water.
5. Discard the rinse water in the 250-mL beaker and clean the beaker before replacing it back under the column.

Part B. Preparing the “Acid Rainfall” Solution
6. In a 400-mL beaker, combine 250 mL of deionized water and 3 mL of universal indicator.
7. Using a Beral-type pipet, add 1–2 drops of 0.1 M sulfuric acid to the indicator solution until it turns red (pH ≤4).

Procedure
1. Slowly pour the “acid rainfall” solution into the demonstration column filled with marble chips.
2. Observe the rainbow spectrum of color changes as the acid rain solution slowly filters through the column. Record
Buffering of Lakes continued

observations in the Buffering Lakes and Streams Worksheet.

3. Record the color of the filtrate after all of the acid rain solution has passed through the column.

4. Using a Beral-type pipet, slowly add more acid rain solution to the filtrate in the beaker. Stir the filtrate with a stirring rod or using a magnetic stirrer. Observe the indicator color of the “naturally buffered lake” created in the beaker.

5. Use a Universal Indicator Color Chart to correlate the relationship of the buffer color and the pH of “acid rainfall” solution.

Disposal

Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures governing the disposal of laboratory waste. The buffered filtrate and dilute acidic rainfall solution may be rinsed down the drain with an excess of water according to Flinn Suggested Disposal Method #26b. The column filled with marble chips may be rinsed with distilled or deionized water and stored for reuse in future demonstrations.

Tips

• The Buffering of Lakes and Streams—Environmental Science Demonstration Kit (Catalog No. FB1911) is available from Flinn Scientific and contains enough chemicals to perform the demonstration seven times: 300 g marble chips (reusable), glass demonstration tube, 35 mL 0.1 M sulfuric acid, 30 mL universal indicator, 21 Beral pipets, one 2-hole rubber stopper (size 2), and cotton balls.

• As an extension of this activity, fill parallel demonstration tubes with marble, granite, and sand and compare the effectiveness of different “soil types” in neutralizing acid rain. Test local soil samples to determine their buffering capacity as well.

• Bromcresol green may be used as an alternative acid–base indicator for this demonstration. Bromcresol green is yellow when the pH is <3.8, blue when the pH >5.4, and green in the intermediate or transition range between these two values. The color changes for bromcresol green occur at the lower pH limit for natural or normal rainfall. (Rain is naturally slightly acidic, pH about 5.5, due to the presence of dissolved carbon dioxide from the atmosphere.)

Discussion

The acidity of different bodies of water in a specific area can vary greatly. An increase in acidity is generally a result of pollution in the form of acid rain or snow. Acid rain is precipitation that has absorbed and reacted with compounds (mainly sulfur oxides and nitrogen oxides) in the atmosphere. The term acid rain is used to describe precipitation with a pH below 5.4. Why does the pH vary in different bodies of water that are in the same geographical area and have been exposed to the same amount of acid rain?

Waters that are able to maintain a generally neutral pH do so largely because of the chemical makeup of the surrounding soil. Soils that are composed of carbonates, such as marble chips (limestone), are able to neutralize acidic solutions. Conversely, soils that are composed mainly of silicates, such as granite, have little or no acid-neutralizing capabilities. When acidic rainfall flows over soils rich in carbonates, bicarbonate ions are formed and the rainwater runoff becomes more basic before entering the nearby body of water. The major lakes, rivers, and streams in the United States have pH values between 6.5 and 8.2. As the pH of water drops below this range, several negative events may occur. Physiological processes of many aquatic organisms can be disrupted or disabled. Toxic metals are also chemically released readily in waters that have a low pH. The toxicity of the water may even reach a level where fish and other organisms can no longer survive.

Acid rainfall reacts with limestone (calcium carbonate, CaCO₃) to produce bicarbonate ions (HCO₃⁻), see Equation 1. This reaction decreases the hydrogen ion concentration in the acidic rainfall and increases the pH, as evidenced by the spectrum of color changes for the universal indicator solution from red to orange to green as it travels though the column in this demonstration.

\[
\text{H}^+ (aq) + \text{CaCO}_3 (s) \rightarrow \text{HCO}_3^- (aq) + \text{Ca}^{2+} (aq) \quad \text{Equation 1}
\]

The formation of bicarbonate ions creates a natural buffer system where the “lake water” in the filtrate can resist the acidifying effect of additional acid rainfall (Equation 2). This reaction is evident from the resistance of the filtrate to change color when more acid rain is added to it (step 4 in the Procedure).

\[
\text{HCO}_3^- (aq) + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 (aq) \quad \text{Equation 2}
\]
The existence of limestone in lake beds enables the lake to initially resist changes in pH when acid rain falls on the water. Moreover, the lake will continue to resist pH changes due to the formation of the buffer system.

Connecting to the National Standards
This laboratory activity relates to the following National Science Education Standards (1996):

- **Unifying Concepts and Processes: Grades K–12**
 - Evidence, models, and explanation
 - Constancy, change, and measurement
 - Evolution and equilibrium

- **Content Standards: Grades 5–8**
 - Content Standard C: Life Science, population and ecosystems,
 - Content Standard D: Earth Science, structure of the Earth system
 - Content Standard F: Science in Personal and Social Perspectives; resources and environments;

- **Content Standards: Grades 9–12**
 - Content Standard F: Science in Personal and Social Perspectives, environmental quality, natural and human-induced hazards, science and technology in local, national, and global challenges

Answers to Worksheet Questions

Observations

1. Compare the initial color of the rainfall solution and the color of the filtrate. Is the pH of the filtrate higher or lower than the acid rain solution? Is it more acidic or more basic?

 The filtrate solution is more basic and has a higher pH than the “acid rain” solution.

2. As the “acid rainfall” solution containing universal indicator passes through the demonstration tube, it changes color indicating a change in pH. Write out the balanced chemical equation for the “acid rainfall” solution reacting with the marble chips.

 \[\text{H}^+ (aq) + \text{CaCO}_3(s) \rightarrow \text{HCO}_3^-(aq) + \text{Ca}^{2+}(aq) \]

3. The formation of bicarbonate ions creates a natural buffer system in lakes and streams. Write out a balanced chemical equation for this reaction and give the physical evidence supporting the presence of a buffer system.

 \[\text{HCO}_3^- (aq) + \text{H}^+ \rightleftharpoons \text{H}_2\text{CO}_3(aq) \]

 There is a buffer system present in the filtrate because when drops of “acid rain” are added the filtrate remains blue-green in color.

4. A soil sample collected from a local stream was found to have high sand content. Is the water found in this stream likely to be more basic or acidic and why?

 The water sample collected from this stream is likely to be more acidic. Soils composed of silicates such as sand and granite have little acid-neutralizing capabilities. In order for the water in the stream to be neutralized the soil would have to contain carbonates.

Answers to Post-Lab Questions

1. Compare the initial color of the rainfall solution and the color of the filtrate. Is the pH of the filtrate higher or lower than the acid rain solution? Is it more acidic or more basic?

2. As the “acid rainfall” solution containing universal indicator passes through the demonstration tube, it changes color indicating a change in pH. Write out the balanced chemical equation for the “acid rainfall” solution reacting with the marble chips.

 \[\text{H}^+ (aq) + \text{CaCO}_3(s) \rightarrow \text{HCO}_3^-(aq) + \text{Ca}^{2+}(aq) \]

3. The formation of bicarbonate ions creates a natural buffer system in lakes and streams. Write out a balanced chemical equation for this reaction and give the physical evidence supporting the presence of a buffer system.

 \[\text{HCO}_3^- (aq) + \text{H}^+ \rightleftharpoons \text{H}_2\text{CO}_3(aq) \]

 There is a buffer system present in the filtrate because when drops of “acid rain” are added the filtrate remains blue-green in color.

4. A soil sample collected from a local stream was found to have high sand content. Is the water found in this stream likely to be more basic or acidic and why?

 The water sample collected from this stream is likely to be more acidic. Soils composed of silicates such as sand and granite have little acid-neutralizing capabilities. In order for the water in the stream to be neutralized the soil would have to contain carbonates.

References

This activity was adapted from *Chemistry in the Environment, Flinn ChemTopic™ Labs*, Volume 22; Cesa, I., Editor; Flinn Scientific Inc.: Batavia, IL (2006).
Flinn Scientific—Teaching Chemistry™ eLearning Video Series

A video of the Buffering of Lakes activity, presented by Kathleen Dombrink, is available in Buffers and in Environmental Chemistry, part of the Flinn Scientific—Teaching Chemistry eLearning Video Series.

Materials for Buffering of Lakes are available from Flinn Scientific, Inc.

Materials required to perform this activity are available in the Buffering of Lakes and Streams—Environmental Science Demonstration Kit available from Flinn Scientific. Materials may also be purchased separately.

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB1911</td>
<td>Buffering of Lakes and Streams—Environmental Science Demonstration Kit</td>
</tr>
<tr>
<td>U0009</td>
<td>Universal Indicator Solution, 35 mL.</td>
</tr>
<tr>
<td>AP1718</td>
<td>Beral Pipet, Thin-Stem, Pkg/20</td>
</tr>
<tr>
<td>AP2312</td>
<td>Rubber Stoppers, 1 lb, Size #2, Black, Two-Hole</td>
</tr>
<tr>
<td>GP9146</td>
<td>Glass Demonstration Tube</td>
</tr>
<tr>
<td>M0032</td>
<td>Marble Chips, 500 g</td>
</tr>
<tr>
<td>S0419</td>
<td>Sulfuric Acid Solution</td>
</tr>
<tr>
<td>FB0680</td>
<td>Cotton Balls, Pkg/20</td>
</tr>
</tbody>
</table>

Buffering of Lakes Worksheet

Observations
Using colored pencils, draw the colors of the universal indicator as it passes through the demonstration tube as well as the color of the collected filtrate.

Post-Lab Questions
1. Compare the initial color of the rainfall solution and the color of the filtrate. Is the pH of the filtrate higher or lower than the acid rain solution? Is it more acidic or more basic?

2. As the “acid rainfall” solution containing universal indicator passes through the demonstration tube, it changes color indicating a change in pH. Write out the balanced chemical equation for the “acid rainfall” solution reacting with the marble chips.

3. The formation of bicarbonate ions creates a natural buffer system in lakes and streams. Write out a balanced chemical equation of this reaction and give the physical evidence supporting the presence of a buffer system.

4. A soil sample collected from a local stream was found to have high sand content. Is the water found in this stream likely to be more basic or acidic and why?