Whoosh Bottle

Introduction

Wow your students with a whoosh! Students will love to see the blue alcohol flame shoot out the mouth of the bottle and watch the dancing flames pulsate in the jug as more air is drawn in.

Concepts

• Exothermic reactions

• Activation energy

Background

Low-boiling alcohols vaporize readily, and when alcohol is placed in a 5-gallon, small-mouthed jug, it forms a volatile mixture with the air. A simple match held by the mouth of the jug provides the activation energy needed for the combustion of the alcohol/air mixture.

Only a small amount of alcohol is used and it quickly vaporizes to a heavier-than-air vapor. The alcohol vapor and air are all that remain in the bottle. Alcohol molecules in the vapor phase are farther apart than in the liquid phase and present far more surface area for reaction; therefore the combustion reaction that occurs is very fast.

Since the burning is so rapid and occurs in the confined space of a 5-gallon jug with a small neck, the sound produced is very interesting, sounding like a "whoosh." The equation for the combustion reaction of isopropyl alcohol is as follows, where 1 mole of isopropyl alcohol combines with 4.5 moles of oxygen to produce 3 moles of carbon dioxide and 4 moles of water:

$$(CH_3)_2CHOH(g) + \frac{9}{2}O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$
 $\Delta H = -1886.6 \text{ kJ/mol}$

• Combustion

Materials

Isopropyl alcohol, (CH3)2CHOH, 20–30 mLGraduated cylinder, 25-mLWhoosh bottle, plastic jug, 5-gallonMatch or wood splint taped to meter stickFire blanket (highly recommended)Safety shield (highly recommended)Funnel, smallSafety shield (highly recommended)

Safety Precautions

Please read all safety precautions before proceeding with this demonstration.

- Isopropyl alcohol is a highly flammable liquid and vapor. Keep away from heat, sparks, open flames, and hot surfaces. May cause drowsiness or dizziness. Avoid breathing mist, vapors or spray. Use in a well-ventilated room.
- Isopropyl alcohol cause serious eye irritation. *Always* wear protective eyewear when performing this demonstration. Anyone viewing this demonstration should also wear eye protection. Please review current Safety Data Sheets for additional safety, handling, and disposal information.
- *Always* recap the alcohol bottle and move it far from the demonstration area. *Never* leave an open bottle of alcohol in the vicinity of the demonstration.
- A safety shield is highly recommended for explosions. Even the mildest explosion creates some chance of shattering and flying objects. Protective eyewear must be worn by the demonstrator as well as by anyone viewing the demo.
- *Never* perform alcohol explosions in glass bottles. The large quantities of gases (H_2O and CO_2) produced during the rapid combustion will easily shatter a glass container. Serious accidents have occurred performing this demonstration in a glass container—do not use glass. Only use a plastic jug, such as a 5-gallon water jug.
- Always pour out excess unvolatilized liquid alcohol from the plastic jug before igniting. If any liquid alcohol is left, it will increase the amount of gaseous afterburning. The liquid could also ignite, which may cause the plastic jug to melt. Always keep a lid or some sort of cover handy, which can be placed over the mouth of the jug to extinguish the flame if it begins to melt the plastic. Excess alcohol in the lip of the mouth of the jug and on the outside of the jug

should be wiped off in order to avoid its igniting and softening the plastic jug.

- Never, ever use a pure oxygen environment as the potential for an extremely violent and deadly explosion is possible.
- Never use methyl alcohol for this demonstration. The high volatility of methyl alcohol means that it has the potential for the most violent combustion of any alcohol.
- Replace the plastic "whoosh bottle" should it show grazing, frosting, cracking, or any small flaws. Routinely replace the bottle after approximately 20 uses or so.
- Do not perform this demonstration directly underneath smoke/heat detectors or sprinkler systems.
- Make sure the ceiling is at least 4 feet above the whoosh bottle to prevent possible scorching and fire.

Preparation

Before each demonstration, inspect the plastic whoosh bottle for grazing, frosting, cracking, or any small flaws. Replace the bottle if it shows signs of fatigue.

Procedure

- 1. Add about 20–30 mL of isopropyl alcohol to the 5-gallon plastic jug. Do not add more than 30 mL of alcohol. Recap the bottle of alcohol tightly and move it far from the demonstration area.
- 2. Lay the jug sideways on a flat surface allowing the alcohol to flow from base to mouth. Slowly swirl the jug for about 30 seconds, trying to spread alcohol liquid completely over the entire interior surface. This allows the liquid alcohol to volatilize and makes the vapor concentration uniform throughout the bottle. If a lot of liquid alcohol is still visible, swirl the bottle for another 30 seconds.
- 3. Pour out any excess liquid alcohol and shake out the bottle. Wipe the inside and outside neck of the bottle to remove any remaining liquid.
- 4. Stand the jug on the floor, placing it in the front of the room and behind a safety shield. *Note:* If desired, the demonstration can be performed on a fireproof demonstration table provided that the ceilings are at least 10 feet high.
- 5. Dim the lights in the room.
- 6. Light a match or wood splint that is taped to a meter stick or other long stick.
- 7. Stand back and, at arm's length, bring the burning match or wood splint over or slightly down into the mouth of the bottle. *Note:* Be sure you are on the safe side of the safety shield as well.
- 8. Observe the explosive "whoosh" that results.
- 9. After the reaction has subsided and all the flames are out, wait for a minute or two until the bottle has cooled slightly. Pour out the water droplets from the bottle into a 25-mL graduated cylinder using a small funnel. As much as 12–14 mL of water may result, showing that water is one of the products of the combustion of alcohol.

Repeating the Demonstration

The demonstration *cannot* be repeated immediately for a few reasons—for one, the demonstration *will not work* due to the buildup of CO_2 in the bottle. There is not enough oxygen in the bottle to allow combustion to occur. More importantly, it is extremely dangerous to add alcohol to the jug if the jug is still hot. A flash-back can occur, causing a fire.

In order to successfully repeat the demonstration for another class, follow the steps below:

- 1. Allow the bottle to cool to room temperature.
- 2. Pour out the water that forms as a result of the combustion.
- 3. Fill the bottle with about 10 of cold tap water and swirl the tap water around in the bottle. Pour the tap water into the sink, and repeat the washing with more cold tap water. Pour all the water out into the sink.
- 4. Dry out the bottle as much as possible by either allowing it to sit upside down or (to speed up the drying) by drying it with

a long string of paper towels pushed into the mouth. A few water droplets on the inside of the bottle do not seem to hinder the combustion.

- 5. In order to reduce the amount of water in the bottle and speed up the drying, try a double rinse of the bottle with a small amount of isopropyl alcohol.
- 6. Review the Safety Precautions again and follow steps 1-9 in the Procedure section.

Disposal

Please consult your current *Flinn Scientific Catalog/Reference Manual* for general guidelines and specific procedures, and review all federal, state and local regulations that may apply, before proceeding. Excess alcohol may be disposed of by allowing it to evaporate in a fume hood according to Flinn Suggested Disposal Method #18a. Rinse the jug well before storing it for future use.

NGSS Alignment

This laboratory activity relates to the following Next Generation Science Standards (2013):

Disciplinary Core Ideas: Middle School MS-PS1 Matter and Its Interactions

PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions Disciplinary Core Ideas: High School

HS-PS1 Matter and Its Interactions PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions Science and Engineering Practices Developing and using models Constructing explanations and designing solutions

Crosscutting Concepts Cause and effect Energy and matter Structure and function

Observations

The first effect that may be observed is the characteristic "whoosh," which involves a moderately violent thrust of flames and blue gas out of the mouth of the bottle. Some afterburning or dancing flames of burning vapor in the body of the bottle may also result.

The second effect is a slower burn of gas down the inside surface of the bottle, producing a ring, plate, or cone of fire, which may be accompanied by an upward thrust or ball of yellow flames in the center of the jug. The sound accompanying these slower burns is actually more of a "whomp." This effect can also be observed by using 70% isopropyl alcohol, illustrating reduced vapor pressure due to dilution and a slower rate of reaction.

Tips

- Various sound and flame effects may be produced depending on the alcohol used and its dilution with water. Try using ethyl alcohol or n-propyl alcohol. Compare the results to isopropyl alcohol. Ethyl alcohol proceeds somewhat faster and more violently due to its higher volatility. Propyl alcohol burns slower producing more heat, which may damage the bottle. *Do not try this demonstration with methyl alcohol.* The high volatility of methyl alcohol means that one must be particularly cautious when using methyl alcohol as it has the potential for the most violent combustion and possible rupture of the bottle.
- Depending on how much alcohol vapor is in the bottle, you may have to place the flame slightly inside the mouth of the whoosh bottle before it ignites.
- The demonstration works best if the alcohol vapor is prepared immediately before the demonstration. If the bottle with the vapor sits for a while, the vapor tends to settle and is harder to light.
- Reagent isopropyl alcohol (99%) or 70% isopropyl alcohol can be used for the demonstration. The 70% alcohol produces a slightly slower burn due to the water vapor.

• Use a graduated cylinder to measure the volume of water produced by the reaction. Instruct your students to perform calculations to determine the volume of water expected from the starting amount of isopropyl alcohol.

For example, if 20 mL of isopropyl alcohol (density = 0.78 g/mL) are used:

 $20 \text{ mL} \times 0.78 \text{ g/mL} = 15.6 \text{ g} \times 1 \text{ mole/60 g} = 0.26 \text{ mol isopropyl alcohol}$

From the balanced equation,

 $0.26 \text{ mol isopropyl alcohol} \times 4 \text{ mol H}_2\text{O}/1 \text{ mol isopropyl alcohol} = 1.04 \text{ mol H}_2\text{O}$

So,

 $1.04 \text{ mol } H_2O \times 18 \text{ g/mol} = 18.7 \text{ g} = 18.7 \text{ mL of } H_2O \text{ expected}$

Discuss possible reasons why the actual volume of water may have been slightly less, such as evaporation or the droplets of water remaining on the inside of the bottle.

Acknowledgments

Flinn Scientific would like to thank John Fortman, Dept. of Chemistry, Wright State University, Dayton, OH for all of his research in providing safety notes and variations on this excellent demonstration. John has written an excellent article on this demonstration; see the reference listed below. Lee Marek, Naperville North H. S., Naperville, IL (retired) and Bill Deese have also popularized this demonstration.

Reference

Fortman, J. J.; Rush, A. C.; Stamper, J. E. J. Chem. Ed. 1999, 76, 1092-1093.

Materials for the *Whoosh Bottle—Chemical Demonstration Kit* are available from Flinn Scientific, Inc.

Catalog No.	Description
AP5943	Whoosh Bottle—Chemical Demonstration Kit
SE225	Safety Shield, 300 × 160
I0019	Isopropyl Alcohol, 500 mL
E0009	Ethyl Alcohol, 500 mL

Consult your Flinn Scientific Catalog/Reference Manual for current prices.