FLINN SCIENTIFIC

Genetics of PTC Worksheet

Observations and Analysis

Table 1.	Phenotypes			Allele frequency base	ed on H-W Equation	
		ters 2pq)	Nont (q	asters	р	q
Class Population	#	%	#	%		
North American Population	0.	55	0.	45		

Questions

1. What is the percentage of heterozygous tasters in the class?

2. How do the proportions of each phenotype in the class compare with the average in the North American population?

3. PTC is a very bitter chemical. What would be an evolutionary advantage to disliking very bitter foods?

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Hardy-Weinberg Equilibrium Worksheet

Observations and Analysis

Table 1a. Group Frequency

	Parent Genotype	Offspring 1	Offspring 2
F ₀	Aa		
F ₁			
F ₂			
F ₃			
F ₄			
F ₅			

Table 1b. Class Frequencies

	AA	Aa	aa
F_0			
F_1			
F ₂			
F ₃			
F ₄			
F ₅			

Table 1c. F₅ Calculations

F_5 # of A alleles	
$F_5 $ # of a alleles	
F ₅ <i>p</i>	
$F_5 q$	

Selection Worksheet

Observations and Analysis

Table 2a. Group Frequency

	Parent Genotype	Offspring 1	Offspring 2	Homozygous Recessive Offspring (aa)
F_0	Aa			
F ₁				
F ₂				
F ₃				
F ₄				
F ₅				

Table 2b. Class Frequencies

	AA	Aa	aa
F_0			
F_1			
F ₂			
F ₃			
F ₄			
F ₅			

Table 2c. F₅ Calculations

F_5 # of A alleles	
F_5 # of a alleles	
F ₅ <i>p</i>	
F ₅ q	

Questions

1. How do the new frequencies of p and q compare to the initial frequencies in Case 1?

- 2. Predict what would happen to the frequencies of p and q if you simulated another five generations.
- 3. In a large population would it be possible to completely eliminate a deleterious recessive allele? Explain.

Heterozygous Advantage Worksheet

Observations and Analysis

Table 3a. Group Frequency

	Parent Genotype	Offspring 1	Offspring 2
F ₀	Aa		
F ₁			
F ₂			
F ₃			
F_4			
F ₅			
F ₆			
F ₇			
F ₈			
F ₉			
F ₁₀			
F ₁₁			
F ₁₂			
F ₁₃			
F ₁₄			
F ₁₅			

Table 3b. Class Frequencies

	AA	Aa	aa
F ₀			
F_1			
F_2			
F ₃			
F_4			
F_5			
F ₆			
F ₇			
F ₈			

4

F ₉		
F ₁₀		
F ₁₁		
F ₁₂		
F ₁₃		
F ₁₄		
F ₁₅		

Table 3c. Calculations

F_5 # of A alleles	
F_5 # of a alleles	
F ₅ p	
$F_5 q$	
F_{10} # of A alleles	
F_{10} # of a alleles	
F ₅ p	
$F_5 q$	
F_{15} # of A alleles	
F_{15} # of a alleles	
F ₅ p	
$F_5 q$	

Questions

1. Explain how the changes in the frequencies of *p* and *q* in Case 2 compare with Case 1 and Case 3.

2. Do you think the recessive allele will be completely eliminated in either Case 2 or Case 3?

3. What is the importance of heterozygotes in maintaining genetic variation in populations?

Genetic Drift Worksheet

Observations and Analysis

Table 4a. Group Frequency

	Parent Genotype	Offspring 1	Offspring 2
F_0	Aa		
F_1			
F_2			
F ₃			
F ₄			
F ₅			

Table 4b. Class Frequencies

Population 1				Population 2				Population 3			
	AA	Aa	aa		AA	Aa	aa		AA	Aa	aa
F ₀				F ₀				F ₀			
F ₁				F ₁				F ₁			
F ₂				F ₂				F ₂			
F ₃				F ₃				F ₃			
F ₄				F ₄				F ₄			
F ₅				F ₅				F ₅			

Table 4c. Calculations

Population 1		Popula	ation 2	Population 3		
# of A alleles		# of A alleles		# of A alleles		
# of a alleles		# of a alleles		# of a alleles		
p		p		p		
<i>q</i>		9		9		

Questions

1. Explain how the initial genotypic frequencies of the three populations compare to the F_5 frequencies.

2. What do your results indicate about the importance of population size as an evolutionary force?