

| T      |      |      |
|--------|------|------|
| vame   |      |      |
| 141110 | <br> | <br> |

# Earth Science Density Kit Worksheet

### Data Table 1

|        | Length (cm) | Width (cm) | Height (cm) | Volume (cm <sup>3</sup> ) | Mass (g) | Density (g/cm <sup>3</sup> ) |
|--------|-------------|------------|-------------|---------------------------|----------|------------------------------|
| Cube 1 |             |            |             |                           |          |                              |
| Cube 2 |             |            |             |                           |          |                              |
| Bar    |             |            |             |                           |          |                              |

### Data Table 2

| Sphere | Observations | Mass (g) | Initial Volume<br>of Water (mL) | Volume of Water &<br>Sphere (mL) | Volume of Sphere (cm <sup>3</sup> ) | Density (g/cm³) |
|--------|--------------|----------|---------------------------------|----------------------------------|-------------------------------------|-----------------|
| 1      |              |          |                                 |                                  |                                     |                 |
| 2      |              |          |                                 |                                  |                                     |                 |

### Data Table 3

| Mineral<br>Sample | Mass (g) | Initial Volume<br>of Water (mL) | Volume of Water &<br>Mineral Sample (mL) | Volume of Mineral<br>Sample (cm <sup>3</sup> ) | Density<br>(g/cm³) |
|-------------------|----------|---------------------------------|------------------------------------------|------------------------------------------------|--------------------|
| 1                 |          |                                 |                                          |                                                |                    |
| 2                 |          |                                 |                                          |                                                |                    |
| 3                 |          |                                 |                                          |                                                |                    |

### **Post-Lab Questions**

### Part 1

- 1. How do the densities of Cube 1, Cube 2, and the Bar compare?
- 2. From the data collected, are any or all of the three objects (Cube 1, Cube 2, Bar) composed of the same material? How do you know?
- 3. Use the density table below to identify the composition of the objects.

| I      | Density of Common Sub | ostances (at 20 °C) g/cm <sup>3</sup> |      |
|--------|-----------------------|---------------------------------------|------|
| Gold   | 19.30                 | Aluminum                              | 2.70 |
| Lead   | 11.40                 | Glass                                 | 2.60 |
| Copper | 8.92                  | Cork                                  | 0.24 |
| Steel  | 7.87                  |                                       |      |

## Likely Identity

| Cube I |  |
|--------|--|
| Cube 2 |  |
| Bar    |  |

| 4. | Once each object has been identified, use the following equation to determine the accuracy of your calculated density |
|----|-----------------------------------------------------------------------------------------------------------------------|
|    | measurements. Use the equation below.                                                                                 |

Percent Error = 
$$\frac{\mid \text{Calculated Density} - \text{Actual Density} \mid}{\text{Actual Density}} \times 100 = \underline{\qquad}$$

5. What are some possible errors in the density determination?

#### Part 2

- 6. Was the same amount of water displaced by each of the spheres? Why or why not?
- 7. Given your results, are the two spheres composed of the same material? Explain.
- 8. What is the composition of the spheres? Use the density chart from Question 3 to determine the answer.

### Part 3

- 9. Compare the densities of the mineral samples. Do the shapes of the minerals have any effect on their densities?
- 10. If the density of a mineral ten times the size of one of the samples you tested was measured, would it have the same density as the smaller mineral? Explain.
- 11. What are some possible sources of error when measuring the density of the mineral samples by water displacement?
- 12. In general, which method (direct measurement and calculation or displacement) do you think gives the best volume measurement? Why?