

Name

Coloring Sodium Polyacrylate with Metal Ions Worksheet

Data Tables

Part 1

Metal	Color of Solution	Color of Metal(II) Polyacrylate
Cu ²⁺		
Fe ²⁺		

Part 2

Absorbance of Cu²⁺(aq) Standard Solutions at 810 nm

[Cu ²⁺], mol/L	Absorbance	
0.05		
0.04		
0.03		
0.02		

Mass of Sodium Polyacrylate _____ g

Absorbance of Cu²⁺(aq) Solutions at 810 nm During Ion-Exchange

Time (min)	Absorbance
0	
5	
10	
15	
20	
25	
30	
Final Solution	

Post-Lab Questions (Use a separate sheet of paper to answer the following questions.)

- 1. Use graph paper or graphing program to construct the copper(II) ion calibration curve.
- 2. Determine the [Cu²+] of the diluted sample from the calibration curve.
- 3. How many moles of Cu²⁺ ions are present in the diluted sample?
- 4. How many moles of Cu²⁺ ions were present in the original sample?
- 5. How many moles of Cu²⁺ ions were removed by sample of sodium polyacrylate?
- 6. Based on your results, calculate the copper(II) ion removal capacity of sodium polyacrylate, that is, mol Cu²+(aq)/gram sodium polyacrylate.