

Data and Results Table

	į.
Mass of weighing boat + sample	g
Mass of weighing boat	g
Mass of sample	g
Mass of filter paper + BaSO ₄	g
Mass of filter paper + BaSO ₄ (2nd weighing)	g
Mass of filter paper	g
Mass of BaSO ₄	g
Moles of BaSO ₄	mol
Mass of Barium, (Ba)	g
Percent Barium	%

Calculations and Post Lab Analyses (Show all work.)

1	Calculate the moles of	precipitated	harium sulfate	R_2SO	Enter this	value in	the Data	and Reculte	Table
Ι.	Calculate the moles of	precipitateu	Darrum Sumacc.	, Dao O_A	. Enter uns	varue III	uic Data	and ixcounts	Table.

2. The moles of precipitated barium sulfate are equal to the moles of barium in the original sample. Calculate the mass of barium in the original sample. Enter this value in the Data and Results Table.

3. From the calculated mass of barium and the mass of the sample, calculate the percent barium in the sample. Enter this value in the Data and Results Table.

4. Review the procedure and list possible sources of errors that would cause the percent of barium in the unknown to be (a) too high or (b) too low.