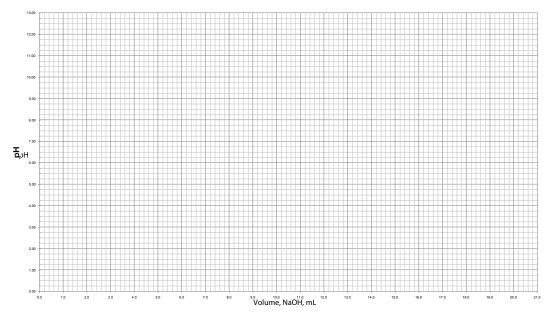


AP Chemistry Review—Acids and Bases Activity #1 Worksheet

1. Record the titration data, then graph volume of NaOH added versus pH.


2. What is the pH of the solution at the neutralization point?

3. Based on the pH at the neutralization point and the fact that the concentration of the acid and base solutions are equal, which is larger, $K_{\rm b}$ for ammonia, the weak base, or $K_{\rm a}$ for chloroacetic acid, the weak acid?

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

AP Chemistry Review—Acids and Bases Activity #2 Worksheet

Record the titration data, then graph volume of NaOH added versus pH.

- 1. The acid solution is a mixture of hydrochloric acid, HCl, and the diprotic weak acid, maleic acid, $(CH_2)_2C_2O_4H_2$. The concentration of the sodium hydroxide solution is 0.10 molar. Recalling that HCl is a strong acid, that is it completely dissociates in solution and maleic acid is a weak diprotic acid, use the titration curve data and the sodium hydroxide concentration to determine the initial concentration of each acid in the original mixture.
- 2. The pK_1 and pK_2 for a diprotic acid H_2A are given by the equations;

$$pK_1 = pH + \log \frac{[HA^-]}{[H_2A]} \qquad pK_2 = pH + \log \frac{[A^2-]}{[HA^-]}$$

Use the titration curve to determine pK_2 .

2

AP Chemistry Review—Acids and Bases Activity #3 Worksheet

Record the color of each solution then refer to the indicator chart to determine the pH range for each of the added indicators.

Data Table

		Cl ₃ CCOOH	ClCH ₂ COOH	CH ₃ COOH
Methyl Red	Color			
	pH			
Bromphenol Blue	Color			
	pН			
Orange IV	Color			
	pН			
Universal Indicator "Rainbow Acid"	Color			
	pH			

Indicator Chart

Indicator		Acid Color	Transition Color	Base Color
Methyl Red	Color	Red	Peach or Orange	Yellow
	pН	<4.8	4.8–6.0	>6.0
Bromphenol Blue	Color	Yellow	Olive Green	Blue/Violet
	pН	<3.0	3.0-4.6	>4.6
Orange IV	Color	Red	Peach or Orange	Yellow
	рН	<1.4	1.4–2.8	>2.8
Universal Indicator	Color	See Chart		
	pH	1–7		

3

Questions

1. Based on your observations, what range of pH values does the half-neutralized acetic acid solution fall into? What is the range for the half-neutralized chloroacetic acid solution? For the half-neutralized trichloroacetic acid solution?

2. For a weak acid (HA), K_a , the dissociation constant, is equal to:

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

The pH of a weak acid solution can be expressed using the Henderson-Hasselbach equation:

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
 Equation 2

For weak acids with K_a values of 1×10^{-2} or less, at half-neutralization the conjugate base concentration, [A⁻], is essentially equal to the weak acid concentration, [HA]. Equation 2 becomes

 $pH = pK_a + log(1)$ or $pH = pK_a$

The pK_a for the 3 weak acids are:

	рК _а
Acetic acid	4.75
Chloroacetic acid	2.85
Trichloroacetic acid	0.70

Do your pH range estimations agree with these values? If not, what are some possible explanations?

4