FLINN SCIENTIFIC Picture Tiles

13.6

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Story Tiles			An ancient ancestor III cut down a tree and carved it to make a spear.
Carbon dioxide is I evenly distributed throughout the entire atmosphere, even at ground level!	Modern methods III of ¹⁴ C dating utilize mass spectrometry, which detects the number of ¹⁴ C and ¹² C atoms.	Using a Geiger III counter, the radio- activity of the artifact can be measured. From this, the ratio of ¹⁴ C/ ¹² C in the artifact can be calculated.	The ¹⁴ C/ ¹² C ratio II in carbohydrates produced during photo- synthesis is equivalent to the ratio of these two isotopes in the atmosphere.
As long as an II organism consumes carbon-containing materials, it will maintain a constant ¹⁴ C/ ¹² C ratio.	Because ¹⁴ C is I constantly being pro- duced (by bombard- ment) and depleted (by decay), it reaches a steady-state concentra- tion in the atmosphere.	Carnivores eat II herbivores and incor- porate the ¹⁴ C stored in herbivores into their own tissues.	The ¹⁴ C/ ¹² C II ratio in dead tissues decreases over time because ¹⁴ C decays but ¹² C does not.
An herbivore eats II plants. It incorporates some of the carbon atoms from starch and carbohydrates into its tissue and exhales some carbon atoms in the form of carbon dioxide.	The collision of I high energy neutrons with ¹⁴ N produces ¹⁴ C atoms. A proton is also ejected in the process.	By knowing how III much this ratio has decreased, we can determine how old the artifact is. This is known as carbon-14 dating.	An archeologist III discovers a spear or a similar carbon-based artifact.
High energy I neutrons from space collide with atoms in the Earth's upper atmosphere.	The radioactivity III can then be compared with the activity level in comparable living tissue.	This equilibrium I is comparable to water trickling into a cup with a small hole in it. The water will eventually reach a constant, stable level in the cup.	The ratio of I ¹⁴ C to ¹² C in atmo- spheric carbon dioxide remains fairly constant over time.
Plants consumeIIatmospheric carbonioxide (CO_2) duringphotosynthesis.	The ¹⁴ C in the I CO ₂ decays back into ¹⁴ N by emitting a beta particle. This decay pro- cess is very slow since ¹⁴ C has a long half-life (5730 years).	Carbon reacts with I oxygen in air to pro- duce carbon dioxide. Both ¹⁴ CO ₂ and ¹² CO ₂ are produced.	Organisms die and II decay through natural processes. Any decrease in the total amount of carbon due to decompo- sition will not affect the ¹⁴ C/ ¹² C ratio.

© 2007 Flinn Scientific, Inc. All Rights Reserved.