

Pre-Laboratory Assignment

- 1. Define the terms Lewis acid and Lewis base.
- 2. Define the terms ligand and coordination number.
- 3. What are the oxidation numbers of the metal atoms in each of the following coordination compounds?
 - a. $[Ni(NH_3)_6](NO_3)_2$
 - $b. K_3[Co(CN)_6]$
 - c. $[Pt(NH_3)_3Br]Cl$
- 4. For each of the following ligands, draw the Lewis structures and indicate the atom that donates an electron pair for complex ion formation.
 - a. NH₃
 - b. CN-
 - c. C₂O₄²⁻

5.	What is the coordination number of the metal in each of the following compounds? $a. [FeCO(CN)_5](NO_3)_3$
	$b. [Ag(CN)_2]Cl$
	c. $[Cr(H_2O)_2Cl_2]Br$
6.	Suppose a student synthesizes potassium trioxalatoferrate(III) trihydrate, $K_3[FeC_2O_4)_3]\cdot 3H_2O$, by starting with 11.356 g of ferrous ammonium sulfate, $Fe(NH_4)_2SO_4\cdot 6H_2O$. a. What is the theoretical yield, in grams, for $K_3[FeC_2O_4)_3]\cdot 3H_2O$?
	b. If 9.376 g of $K_3[FeC_2O_4)_3]$ 3 H_2O were actually synthesized, what is the percent yield?

Data Table

1. Mass of $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O(g)$

2. Mass of $K_3[Fe(C_2O_4)_3] \cdot 3H_2O(g)$

Wavelength, nm	Absorbance
360	
370	
380	

Post-Laboratory Review Questions

Results Table

Theoretical yield of $K_3[Fe(C_2O_4)_3]$ ·3 H_2O (g)

Percent yield of $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$ (%)

Absorbance Ratios	Standard	Product
360/370 nm	1.43	
370/380 nm	1.64	
360/380 nm	2.35	

1.	Calculate the theoretical yield of $K_3[Fe(C_2O_4)_3]^{*3}H_2O$, based on the sample weight of $Fe(NH_4)_2(SO_4)_2^{*6}H_2O$. Enter this
	value in the Results Table.

2. Calculate the percent yield for the $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$ product. Enter this value in the Results Table.

3. Calculate the absorbance ratios of the product solution. Calculate the 360/370 nm, the 370/380 nm, and the 360/380 nm absorbance ratios and enter these values in the Results Table. Was the product $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$?