Pre-Laboratory Assignment

1. Define the terms Lewis acid and Lewis base.
2. Define the terms ligand and coordination number.
3. What are the oxidation numbers of the metal atoms in each of the following coordination compounds?
a. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$
b. $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
c. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}\right] \mathrm{Cl}$
4. For each of the following ligands, draw the Lewis structures and indicate the atom that donates an electron pair for complex ion formation.
a. NH_{3}
b. CN^{-}
c. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
5. What is the coordination number of the metal in each of the following compounds?
a. $\left[\mathrm{FeCO}(\mathrm{CN})_{5}\right]\left(\mathrm{NO}_{3}\right)_{3}$
b. $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right] \mathrm{Cl}$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Br}$
6. Suppose a student synthesizes potassium trioxalatoferrate(III) trihydrate, $\left.\mathrm{K}_{3}\left[\mathrm{FeC}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, by starting with 11.356 g of ferrous ammonium sulfate, $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
a. What is the theoretical yield, in grams, for $\left.\mathrm{K}_{3}\left[\mathrm{FeC}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$?
b. If 9.376 g of $\left.\mathrm{K}_{3}\left[\mathrm{FeC}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were actually synthesized, what is the percent yield?

Data Table

1. Mass of $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. Mass of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (g)

Wavelength, nm	Absorbance
360	
370	
380	

Post-Laboratory Review Questions

Results Table

Theoretical yield of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (g)
Percent yield of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (\%)

Absorbance Ratios	Standard	Product
$360 / 370 \mathrm{~nm}$	1.43	
$370 / 380 \mathrm{~nm}$	1.64	
$360 / 380 \mathrm{~nm}$	2.35	

1. Calculate the theoretical yield of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, based on the sample weight of $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Enter this value in the Results Table.
2. Calculate the percent yield for the $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ product. Enter this value in the Results Table.
3. Calculate the absorbance ratios of the product solution. Calculate the $360 / 370 \mathrm{~nm}$, the $370 / 380 \mathrm{~nm}$, and the $360 / 380 \mathrm{~nm}$ absorbance ratios and enter these values in the Results Table. Was the product $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$?
