

| Jame |  |  |
|------|--|--|
| vame |  |  |
|      |  |  |

## Discovering the Speed of Sound in Air Worksheet

## Data Table

| Frequency (Hz) | Tube Length (cm) | Tube Length "L" (m) | Wavelength (m) | Speed of Sound (m/s) | Average Speed of Sound (m/s) |
|----------------|------------------|---------------------|----------------|----------------------|------------------------------|
| 256            |                  |                     |                |                      |                              |
| 288            |                  |                     |                |                      |                              |
| 320            |                  |                     |                |                      |                              |
| 341            |                  |                     |                |                      |                              |
| 384            |                  |                     |                |                      |                              |
| 428            |                  |                     |                |                      |                              |
| 480            |                  |                     |                |                      |                              |
| 512            |                  |                     |                |                      |                              |

## Post-Lab Questions (Answer all non-mathematical questions using complete sentences.)

- 1. Calculate the wavelength for the 512 Hz tuning fork. Show the formula used, substitution with units, and label the answer with the correct units.
- 2. Calculate the speed of sound for the 512 Hz tuning fork. Show the formula used, substitution with units, and label the answer with the correct units.
- 3. Observe the length and frequency of each tuning fork. What is the relationship between the length of a tuning fork and its frequency?
- 4. Look at the data in the frequency and wavelength columns of the data table. As the frequency increases, what happens to the wavelength?
- 5. Notice the similarity between the speeds of sound calculated for each tuning fork. Using the formula  $v = f\lambda$ , and your answer from question #2 above, explain how sounds of different frequencies can have similar speeds.
- 6. Calculate the class average for the speed of sound in air.
- 7. The actual speed of sound in air at STP is 331 m/s. How does the class average speed of sound in air compare to the actual accepted value? Calculate the percent error between the measured and accepted speed of sound.