

FLINN SCIENTIFIC

Analysis of Hydrogen Peroxide

Data Table

	Trial 1	Trial 2	Trial 3
Molarity of KMnO ₄ solution (M)			
Initial volume KMnO ₄ solution (mL)			
Final volume KMnO ₄ solution (mL)			
Volume of KMnO ₄ added to flask (mL)			

Post-Lab Calculations and Analysis (Use a separate sheet of paper to answer the following questions.)

Construct a Results Table to summarize the results of the following calculations (#1–5):

- 1. Multiply the molarity of the KMnO₄ solution by the volume added to the flask to calculate the number of moles of permanganate ion consumed in each trial. *Hint:* What are the units of molarity?
- 2. Multiply the number of moles of permanganate ion by the mole ratio for hydrogen peroxide (see the *Pre-Lab Questions*) to determine the number of moles of hydrogen peroxide for each trial.
- 3. Multiply the number of moles of hydrogen peroxide by the molar mass of hydrogen peroxide to determine the number of grams of hydrogen peroxide for each trial.
- 4. For each trial, divide the number of grams of hydrogen peroxide by the total mass of the hydrogen peroxide *solution* (see step 7 in the *Procedure*), and multiply the answer by 100. The result is the *percent hydrogen peroxide* in the commercial antiseptic. *Note:* Assume the density of the commercial antiseptic solution is 1.00 g/mL.
- 5. Determine the average value for the percent hydrogen peroxide in the commercial solution and compare the value with the concentration reported on the product label.
- 6. If an insufficient amount of acid is added in step 9, some of the MnO_4^- ions will be reduced to MnO_2 instead of to Mn^{2+} .
 - *a*. How would this change the mole ratio for the titration reaction?
 - b. How would this affect the volume of KMnO₄ solution needed to reach the endpoint?
 - c. If reduction to MnO₂ were occurring but not being reflected in the calculations, would the calculated percent hydrogen peroxide be too high or too low as a result of this error?