

Name_

Roller Coaster Worksheet

Observations

Data Table

Diameter of the marble: _____

Mass of the marble: _____

Height of Release Point (0 cm):

Track Region	Track Position	Height above Tabletop	Transit Time				
			Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
Lowest Point of the First Valley							
Highest Point of the Second Hill							
30-cm Height Track Position 1		30.0 cm					
30-cm Height Track Position 2		30.0 cm					
30-cm Height Track Position 3		30.0 cm					
End of Track	130.0 cm						

Results Table

Track Region	Track Position	Height above Tabletop	Average Speed
Lowest Point of the First Valley			
Highest Point of the Second Hill			
30-cm Height Track Position 1		30.0 cm	
30-cm Height Track Position 2		30.0 cm	
30-cm Height Track Position 3		30.0 cm	
End of Track	130.0 cm		

© 2018, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Roller Coaster Worksheet, continued

Analysis and Post-Lab Questions

- 1. Calculate the average speed of the marble at each Track Position (in cm/s). Show all calculations and enter results in the Results Table. *Hint:* Divide the marble diameter by the average "Transit Time" at each position.
- 2. Graph the Average Speed versus the Track Position.
- 3. Where along the track does the marble roll with the greatest speed?
- 4. Graph the Average Speed versus the Height above the Tabletop. What conclusions can be made from the graph?
- 5. Theoretically, on a frictionless surface, the marble should have the same speed at positions that are at the same height. How does the speed of the marble compare at the three different 30-cm height positions? Explain any discrepancies.
- 6. Imagine riding in a roller coaster or traveling on a bicycle that follows a similar path as the Roller Coaster Track. Would you feel heavier or lighter traveling down the inclined portion? Would you feel heavier or lighter in valley as you begin to travel up the curved path? Relate these experiences to the forces that affect the marble traveling along the Roller Coaster Track and explain why the marble does not travel at the same speed for each 30-cm height position.

Advanced Post-Lab Questions

- 7. Calculate the potential energy of the marble at each Track Position. *Hint:* Convert grams to kilograms and centimeters to meters to obtain the unit of joules (J).
- 8. Because the marble rolls down a tract, or rail, Equation 7 must be modified slightly to account for this condition. The total kinetic energy (KE_T) of the marble will be equal to approximately $\frac{3}{4}mv^2$. Use this equation to calculate the kinetic energy of the marble at each Track Position. *Hint:* Convert grams to kilograms and centimeters per second to meters per second to obtain the unit of joules (J).
- 9. Compare the total energy of the marble at each Track Position with the initial potential energy of the marble. What relationship exists between the kinetic and potential energy of the marble?