

T		
Name		
valiic	 	

Oxidation-Reduction Basics

Data Table 1. Reactivity of the Metals

Tube	Metal	0.1 M Solution	Observations
1	Mg	CuSO ₄	
2	Mg	ZnSO ₄	
3	Cu	${ m MgSO}_4$	
4	Cu	ZnSO ₄	
5	Zn	${ m MgSO}_4$	
6	Zn	CuSO ₄	

NR = No Reaction

Data Table 2. Halogens in Aqueous and Organic Solutions

Tubes	Halogen	Observations
1 & 2	Bromine water (Br ₂)	
3 & 4	Chlorine water (Cl ₂)	
5 & 6	Iodine solutions (I ₂)	
1 & 2	Br ₂ + hexanes	
3 & 4	Cl ₂ + hexanes	
5 & 6	I ₂ + hexanes	

Data Table 3. Reactivity of the Halogens

Tube	Free Halogen	0.1 M Halide Solution	Observations
1	Br ₂	NaCl	
2	Br ₂	NaI	
3	Cl ₂	NaBr	
4	Cl ₂	NaI	
5	I_2	NaBr	
6	I_2	NaCl	

Post-Lab Questions (Answer the following questions on a separate sheet of paper.)

Part 1. Reactivity of the Metals

- 1. Based on laboratory results, which metal is most active? How do you know this?
- 2. Which metal is least active? How do you know this?
- 3. Using lab data, rank the metals in order of reactivity, from most active to least active. What evidence do you have for this activity order?
- 4. Write a balanced equation for each reaction that occurred in Part 1. Write net ionic equations, omitting any spectator ions.
- 5. Look specifically at the reaction between magnesium metal and copper(II) ions.
 - a. Write the half-reaction for magnesium metal. Is this an oxidation or a reduction reaction?
 - b. Write the half-reaction for the copper(II) ions. Is this an oxidation or a reduction reaction?
 - c. Which material is being oxidized and which is the oxidizing agent? Which material is being reduced and which is the reducing agent?
- 6. Which metal is most likely to retain electrons—magnesium, copper, or zinc? Why?
- 7. Which metal has the greatest tendency to lose electrons? Why?

Part 2. Reactivity of the Halogens

- 8. Based on laboratory observations, how can each of the free halogens—Br₂, Cl₂, and I₂—be detected in the aqueous layer and in the organic (hexanes) layer?
- 9. Look at results from tubes 1 and 2. Did bromine react with the chloride ion solution? the iodide ion solution? What evidence do you have for any reaction that occurred?
- 10. Look at results from tubes 3 and 4. Did chlorine react with the bromide ion solution? the iodide ion solution? What evidence do you have for any reaction that occurred?
- 11. Look at results from tubes 5 and 6. Did iodine react with the bromide ion solution? the chloride ion solution? What evidence do you have for any reaction that occurred?
- 12. Write a balanced equation for each reaction that occurred in Part 2. Write net ionic equations, omitting any spectator ions.
- 13. Based on laboratory results, which halogen is the most active? Which is the least active? Provide evidence.
- 14. Using lab data, rank the halogens in order of their relative oxidizing ability, from highest to lowest. What evidence do you have for this activity order?
- 15. Look specifically at the reaction between elemental bromine and iodide ions.
 - a. Write the half-reaction for the elemental bromine. Is this an oxidation or a reduction reaction?
 - b. Write the half-reaction for the iodide ions. Is this an oxidation or a reduction reaction?
 - c. Which material is being oxidized and which is the oxidizing agent? Which material is being reduced and which is the reducing agent?