\qquad

Data Tables

Part A. pH of Acetic Acid-Sodium Acetate Buffer

mL of 0.2 M HCl added	pH		mL of 0.2 M NaOH added	pH	
	Actual	Calc.		Actual	Calc.
0			0		
1.0			1.0		
2.0			2.0		
3.0			3.0		
4.0			4.0		
5.0			5.0		
6.0			6.0		
7.0			7.0		
8.0			8.0		
9.0			9.0		
10.0			10.0		

Part B. pH of Ammonia-Ammonium Chloride Buffer

mL of 0.2 M HCl added	pH		mL of 0.2 M NaOH added	pH	
	Actual	Calc.		Actual	Calc.
0			0		
1.0			1.0		
2.0			2.0		
3.0			3.0		
4.0			4.0		
5.0			5.0		
6.0			6.0		
7.0			7.0		
8.0			8.0		
9.0			9.0		
10.0			10.0		

Part C.

mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$	mL	pH	
mL of $0.1 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$	mL	pH	(calc.)
(actual)			

Calculations

1. Using Equation 4 on page 1, calculate the pH of the Part A acetic acid-sodium acetate buffer solution before and after 1.0 mL of 0.2 M HCl solution is added to the buffer. K_{a} of acetic acid equals 1.8×10^{-5}. Enter these in the Part A Data Table.
2. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M HCl added to the buffer. Enter these values in the Part A Data Table.
3. When strong base is added to a buffer of a weak acid-conjugate base, the acid reacts with the base to form water and its conjugate base.
$\mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{A}^{-}(\mathrm{aq})$
Calculate the pH of the Part A acetic acid-sodium acetate buffer solution after 1.0 mL of the 0.2 M NaOH solution is added to the buffer. Enter this value in the Part A Data Table.
4. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M NaOH added to the buffer. Enter these values in the Part A Data Table.
5. The ammonia-ammonium chloride buffer solution is a weak base-conjugate acid buffer solution. K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$. Using Equation 4 on page 1 and the relationship, $\mathrm{pH}=14.0-\mathrm{pOH}$, calculate the pH of the ammonia-ammonium chloride buffer solution after 1.0 mL of 0.2 M HCl is added to the buffer solution. The initial moles of both NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ in 50 mL of the buffer solution are 0.0025 moles. Record the pH value in the Part B Data Table.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .
$$

6. Repeat the pH calculation for each successive 1.0 mL increment of 0.2 M HCl added to the buffer. Enter these values in the Part B Data Table.
7. Repeat the pH calculations for each 1.0 mL increment of 0.2 M NaOH added to the ammonia-ammonium chloride buffer solution. Enter these values in the Part B Data Table.

Post-Laboratory Review Questions

1. Calculate the pH change when 1 mL 0.2 M HCl is added to 50 mL of deionized water. How does this pH value change compare to those obtained when 1 mL of 0.2 M HCl is added to the buffers?
2. At what point did each of the buffers lose their effectiveness? Explain.
