

Name_____

Data Tables

Reference Solutions

Temperature		
Sample	[FeSCN ²⁺]	Absorbance
Reference solution #1		
Reference solution #2		
Reference solution #3		
Reference solution #4		
Reference solution #5		

Test Solutions

Temperature			
Sample	[Fe ³⁺]*	[SCN ⁻]*	Absorbance
Test solution #6			
Test solution #7			
Test solution #8			
Test solution #9			
Test solution #10			

*These are the concentrations of ions in solution immediately after mixing and before any reaction has occurred. See the *Pre-Lab Questions* for calculations.

Results Table

Sample	[FeSCN ²⁺] _{eq}	[Fe ³⁺] _{eq}	[SCN⁻] _{eq}	K _{eq}
Test Solution #6				
Test Solution #7				
Test Solution #8				
Test Solution #9				
Test Solution #10				
Average value				
Average deviation				

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Post-Lab Calculations and Analysis

(Use a separate sheet of paper to answer the following questions.)

1. Plot molar concentration of FeSCN²⁺ versus absorbance as shown in Figure 1, and draw the best-fitting straight line through the data points. Include the origin (zero absorbance for zero concentration) as a valid point.

Figure 1. Sample Graph of Absorbance versus Concentration of FeSCN²⁺

- 2. The unknown concentration of FeSCN²⁺ ions in each test solution can be determined from the graph. Find the absorbance value of the test solution, read across to the best-fit, straight-line curve, and then down to the x-axis to find the concentration.
- 3. Record the $FeSCN^{2+}$ concentration for each test solution in the Results Table.
- 4. Calculate the equilibrium concentration of Fe³⁺ ions in each test solution #6–10: subtract the equilibrium concentration of FeSCN²⁺ ions from the initial concentration of Fe³⁺ ions (see the Test Solutions Data Table). Enter the results in the Results Table.

$$[Fe^{3+}]_{eq} = [Fe^{3+}]_{initial} - [FeSCN^{2+}]_{eq}$$

5. Calculate the equilibrium concentration of SCN⁻ ions in each test solution #6–10: subtract the equilibrium concentration of FeSCN²⁺ ions from the initial concentration of SCN⁻ ions (see the Test Solutions Data Table). Enter the results in the Results Table.

$$[\text{SCN}^-]_{\text{eq}} = [\text{SCN}^-]_{\text{initial}} - [\text{FeSCN}^{2+}]_{\text{eq}}$$

- 6. Use Equation 4 in the *Background* section to calculate the value of the equilibrium constant K_{eq} for each test solution #6–10. Enter the results in the Results Table.
- 7. Calculate the mean (average value) of the equilibrium constant for the five test solutions.
- 8. Calculate the *average deviation* for K_{eq} : Find the absolute value of the difference between each individual value of the equilibrium constant and the mean. The average of these differences for solutions #6–10 is equal to the average deviation.
- 9. The average deviation describes the precision of the results. Does the precision indicate that the equilibrium constant is indeed a "constant" for this reaction? Explain.
- 10. Describe the possible sources of error in this experiment and their likely effect on the results.