FLINN SCIENTIFIC

Lab Demo 1. Data Table

Part I: The Reactants

1.	Number of moles of sodium bicarbonate	 moles
2.	Mass of sodium bicarbonate	 grams
3.	Molarity of the acid solution used	 М
4.	Moles of acid needed to react with all the moles of sodium bicarbonate being used (write the balanced chemical equation)	 moles
5.	Volume of acid solution needed (milliliters)	 milliliters

Part II: The Volume of the Gas That Is Produced

1. Volume of gas collected under lab conditions	liters (V ₁)
a. Starting volume	liters
b. Final volume	liters
2. a. Temperature of the gas collected (Celsius)	°C
b. Temperature of the gas collected (Kelvin = $^{\circ}C + 273$)	K (T ₁)
3. a. Pressure of the atmosphere (inches of Hg)	inches of Hg
b. Pressure of the atmosphere (mm = in \times 25.4 mm/in)	mm of Hg
4. a. Temperature of the water in the eudiometer	°C
b. Vapor pressure of water at this temperature (refer to the table below)	mm of Hg
5. Pressure of the dry gas collected	$_$ mm of Hg (P ₁)

Convert the observed volume of the dry gas in the eudiometer to the volume under standard conditions (STP).

6. Volume of carbon dioxide gas collected under standard conditions (STP)	liters (V ₂)
7. Moles of carbon dioxide gas expected (see the balanced chemical equation)	moles
8. Volume of carbon dioxide gas at STP, theoretical	liters
9. Percent error	%

Table 1. Vapor Pressure of Water at Different Temperatures

Temperature, °C	P _{H2O} , mm Hg	Temperature, °C	P _{H2O} , mm Hg
16	13.6	22	19.8
17	14.5	23	21.1
18	15.5	24	22.4
19	16.5	25	23.8
20	17.5	26	25.2
21	18.7	27	26.7

© 2019, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Lab Demo 2. Data Table

Part I: The Starting Material

1. a. Name of the substance used	
b. Chemical formula of the substance used	
2. a. Initial physical state	
b. Probable initial temperature of the substance used	 _°C
3. Number of moles of the substance used	 mole
4. Mass of the substance needed	 grams
5. Mass of 50-mL Erlenmeyer flask	 grams
6. Mass of 50-mL Erlenmeyer flask + mass of solid or liquid sample needed	 grams
Part II: The Volume of the Gas That Is Produced	
1. Name of the gas produced	
2. Chemical formula of the gas that is produced	
3. Volume of the gas collected under lab conditions	 _ liters (V_1)
4. a. Temperature of the gas collected (Celsius)	 _°C
b. Temperature of the gas collected (K = $273 + ^{\circ}C$)	 $K(T_1)$
5. a. Pressure of the atmosphere (inches of Hg)	 inches of Hg
b. Pressure of the atmosphere (mm = in \times 25.4 mm/in)	 mm of Hg
6. a. Temperature of the water in the overflow tank	 _°C
b. Vapor pressure of water at this temperature (refer to the table below)	 _ mm of Hg
7. Pressure of the dry gas collected	 $_$ mm of Hg (P ₁)

Convert the observed volume of the dry gas in the eudiometer to the volume under standard conditions (STP).

8. Volume of the gas collected under standard conditions	liters (V_2)
9. Moles of gas expected	moles
10. Volume of gas at STP expected	liters
11. Percent error	%

Table 1. Vapor Pressure of Water at Different Temperatures

Temperature, °C	P _{H2} O, mm Hg	Temperature, °C	P _{H2} O, mm Hg
16	13.6	22	19.8
17	14.5	23	21.1
18	15.5	24	22.4
19	16.5	25	23.8
20	17.5	26	25.2
21	18.7	27	26.7

2

Lab Demo 3. Data Table

Part I: The Reactants

1. Number of moles of metal	 mole
2. Mass of active metal needed	 grams
3. Mass of weighing dish	 grams
4. Mass of weighing dish and active metal	 grams
5. Molarity of the acid solution used	 Μ
 6. Moles of acid needed to react with all the moles of metal being used (write the balanced chemical equation) + = + 	 moles
7. Volume of acid solution needed (milliliters)	 milliliters
Part II: The Volume of the Gas That Is Produced	
1. Name of the gas produced	

2. Chemical formula of the gas that is produced	
3. Volume of gas collected under lab conditions	liters (V ₁)
4. a. Temperature of the hydrogen gas collected (Celsius)	°C
b. Temperature of the hydrogen gas collected (Kelvin = $^{\circ}C + 273$)	K (T ₁)
5. a. Pressure of the atmosphere (inches of Hg)	inches of Hg
b. Pressure of the atmosphere (mm = in \times 25.4 mm/in)	mm of Hg
6. a. Temperature of the water in the overflow tank	°C
b. Vapor pressure of water at this temperature (Consult a reference book for this value)	mm of Hg
7. Pressure of the dry hydrogen gas collected	$_$ mm of Hg (P ₁)

Convert the observed volume of the dry gas in the eudiometer to the volume under standard conditions (STP).

8. Volume of hydrogen gas collected under standard conditions (STP)	liters (V_2)
9. Moles of hydrogen gas expected (see the balanced chemical equation)	moles
10. Volume of hydrogen gas at STP expected	liters
11. Percent error	%

Table 1. Vapor Pressure of Water at Different Temperatures

Temperature, °C	P _{H2} O, mm Hg	Temperature, °C	P _{H2O} , mm Hg
16	13.6	22	19.8
17	14.5	23	21.1
18	15.5	24	22.4
19	16.5	25	23.8
20	17.5	26	25.2
21	18.7	27	26.7