

FLINN SCIENTIFIC

Heats of Reaction and Hess's Law

Data Table

	Reaction A (Mg + HCl)		Reaction B (MgO + HCl)	
	Trial 1	Trial 2	Trial 1	Trial 2
Mass of Calorimeter (g)				
Mass of Calorimeter + HCl Solution (g)				
Mass of Mg (Reaction A) or MgO (Reaction B) (g)				
Initial Temperature (°C)				
Final Temperature (°C)				

Post-Lab Calculations and Analysis (Show all work on a separate sheet of paper.)

Construct a Results Table to summarize the results of all calculations. For each reaction and trial, calculate the:

- 1. Mass of hydrochloric acid solution.
- 2. Total mass of the reactants (solids and liquids).
- 3. Change in temperature, $\Delta T = T_{\text{final}} T_{\text{initial}}$.
- 4. Heat (q) absorbed by the solution in the calorimeter. *Note:* $q = m \times s \times \Delta T$, where s is the specific heat of the solution in J/g.°C. Use the total mass of reactants for the mass (m) and assume the specific heat is the same as that of water, namely, 4.18 J/g.°C.
- 5. Number of moles of magnesium and magnesium oxide in Reactions A and B, respectively.
- 6. Enthalpy change for each reaction in units of kilojoules per mole (kJ/mole).
- 7. Average enthalpy change (heat of reaction, ΔH_{rxn}) for Reactions A and B. *Note:* The enthalpy change is positive for an endothermic reaction, negative for an exothermic reaction.
- 8. Use Hess's Law to calculate the heat of reaction for Equation 1. *Hint:* See your answer to PreLab Question #2.
- 9. The heat of reaction for Equation 1 is equal to the heat of formation of solid magnesium oxide.
 - *a*. Look up the heat of formation of magnesium oxide in your textbook or a chemical reference source.
 - b. Calculate the percent error in your experimental determination of the heat of reaction for Equation 1.