

Name_____

Data Table

1. Mass of $Fe(NH_4)_2(SO_4)2 \cdot 6H_2O$, g ______ g

2. Mass of K₃[Fe(C₂O₄)₃]•3H₂O, g _____g

Wavelength, nm	Absorbance
360	
370	
380	

Post-Lab Calculations and Questions

Results Table

Theoretical yield of $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$, g

Percent yield of $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$, g

Absorbance Ratios	Standard	Product
360/370 nm	1.43	
370/380 nm	1.64	
360/380 nm	2.35	

- 1. Calculate the theoretical yield of $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$, based on the sample weight of $Fe(NH_4)_2(SO_4)2 \cdot 6H_2O$. Enter this value in the Results Table.
- 2. Calculate the percent yield for the $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$ product. Enter this value in the Results Table.
- 3. Calculate the absorbance ratios of the product solution. Calculate the 360 nm/370 nm, the 370 nm/380 nm, and the 360 nm/380 nm absorbance ratios and enter these values in the Results Table. Was the product $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$?