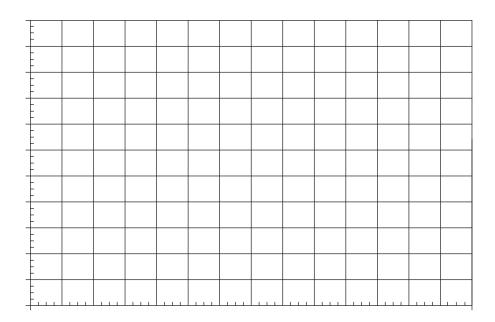
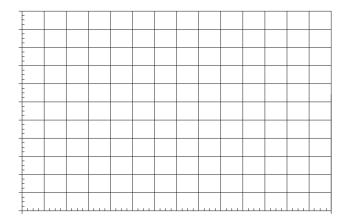


1 tuille

Laboratory Report

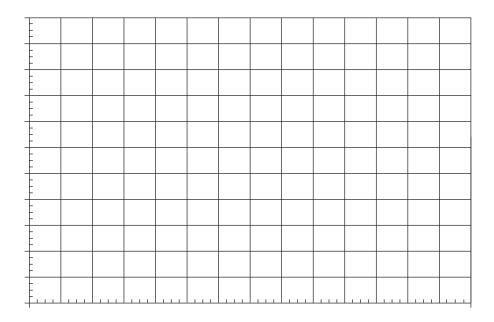

Part A. Effect of Enzyme Concentration

Time (sec)	Absorbance at 500 nm				
	Trial A-1	Trial A-2	Trial A-3		
20					
40					
60					
80					
100					
120					
140					
160					
180					
200					
220					
240					
260					
280					
300					

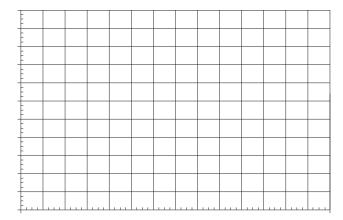

Part B. Effect of Substrate Concentration

Time (sec)	Absorbance at 500 nm				
	Trial B-1	Trial B-2	Trial B-3	Trial B-4	
20					
40					
60					
80					
100					
120					
140					
160					
180					
200					
220					
240					
260					
280					
300					

1. **Analyze the data for Part A:** Using different colors and/or shapes for the data points in each trial, graph absorbance versus time on the following graph. Draw a best-fit straight line through the data points for each separate trial. Add a legend to identify the data corresponding to each trial.



2. Determine the slope (Δ Absorbance/ Δ Time) for each best-fit straight line in the above graph. This is the rate of reaction for each trial. Plot the rate of reaction versus the amount (volume) of enzyme.



3. Explain how the above graph for the effect of enzyme concentration on the reaction rate supports a dynamic theory for biological reactions.

4. **Analyze the data for Part B:** Using different colors and/or shapes for the data points in each trial, graph absorbance versus time on the following graph. Draw a best-fit straight line through the data points for each separate trial. Add a legend to identify the data corresponding to each trial.

5. Determine the slope (Δ Absorbance/ Δ Time) for each best-fit straight line in the above graph. This is the rate of reaction for each trial. Plot the rate of reaction versus the amount (volume) of substrate.

6. Explain the shape of the curve for the effect of substrate concentration on reaction rate in terms of enzyme—substrate binding.