

т		
Jame		
\allic	 	

Laboratory Report

Circumference of glass ornament	
Mass of ornament	
Mass of silver ornament	

- 1. Using the measured circumference of the glass ornament, calculate the radius (in cm) and the surface area (cm²) of the ornament. (The formula for the circumference of a sphere is $2\pi r$.)
- 2. Calculate the mass and the number of moles of silver lining the inside of the glass ornament.
- 3. The density of silver is 10.5 g/cm³. What is the volume of silver metal lining the inside of the glass ornament?
- 4. Assume that the volume of silver in the ornament can be estimated using the following equation: Volume = Surface area × thickness. Calculate the approximate thickness of the silver lining in centimeters.
- 5. Convert the thickness of the silver layer to micrometers (1 μ m = 1 \times 10⁻⁶ m) and also nanometers (1 nm = 1 \times 10⁻⁹ m).
- 6. The radius (r) of a silver atom is 160 picometers (1 pm = 1×10^{-12} m). Estimate the thickness of the silver lining in terms of the number (N_{Ag}) of silver atoms. Assume that the thickness is equal to $N_{Ag} \times 2r$. **Hint:** Convert the radius of a silver atom from picometers to centimeters first!
- 7. Balance the following chemical equation for the formation of Tollens' reagent in this experiment.