

Name_

Iron Data Sheet

Pre-Lab Activity

Test Tube	Solution 1	Oxidation # of Iron	Solution 2	Oxidation # of Iron
1			Potassium ferrocyanide $K_4[Fe(CN)_6]$	
2	Iron(II) sulfate FeSO ₄		Potassium ferricyanide $K_3[Fe(CN)_6]$	
3			Potassium thiocyanate KSCN	
4			Potassium ferrocyanide K ₄ [Fe(CN ₆]	
5	Iron(III) chloride FeCl ₃		Potassium ferricyanide $K_3[Fe(CN)_6]$	
6			Potassium thiocyanate KSCN	

Show all work.

Redox Observations

Test Tube	Solution 1	Solution 2	Observations
1		Potassium ferrocyanide $K_4[Fe(CN)_6]$	
2	Iron(II) sulfate FeSO ₄	Potassium ferricyanide K_3 [Fe(CN) ₆]	
3		Potassium thiocyanate KSCN	
4		Potassium ferrocyanide K_4 [Fe(CN ₆]	
5	Iron(III) chloride FeCl ₃	Potassium ferricyanide $K_3[Fe(CN)_6]$	
6		Potassium thiocyanate KSCN	

Determination of Unknown

Test Tube	Solution 1	Solution 2	Observations	Oxidation # of Iron
1		Potassium ferrocyanide $K_4[Fe(CN)_6]$		
2	Iron-containing solution	Potassium ferricyanide K ₃ [Fe(CN) ₆]		
3		Potassium thiocyanate KSCN		-

© 2018, Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc.

Post-Lab Questions

1. How can potassium thiocyanate be used to confirm that Fe²⁺ ions have been oxidized to Fe³⁺? Will tube 1 eventually turn Prussian blue?

2. How can potassium ferricyanide be used to confirm that Fe^{3+} ions have been reduced to Fe^{2+} ?

3. Use the oxidation state rules to assign oxidation states for the indicated atoms in each oxidizing agent and its product. Show your work.

Atom	Oxidizing Agent	Oxidation State
Mn	MnO ₄ -	
Ο	H_2O_2	
Cl	OCl-	
Ι	IO ₃ -	
S	SO ₄ ^{2–}	

- 4. Circle the correct choices to complete the following definitions.
 - a. An oxidizing agent is a substance that causes the (*oxidation/reduction*) of another reactant in a redox reaction. The oxidation state of the oxidizing agent (*increases/decreases*), and the oxidizing agent itself undergoes (*oxidation/reduction*) during the reaction.
 - b. A reducing agent is a substance that causes the (*oxidation/reduction*) of another reactant in a redox reaction. The oxidation state of the reducing agent (*increases/decreases*), and the reducing agent itself undergoes (*oxidation/reduction*) during the reaction.

2