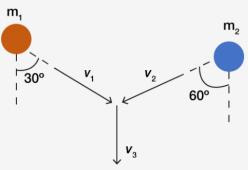

PrepTeacher test

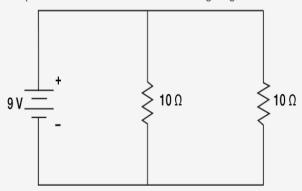
Teacher View Profile

Flinn*PREP*[™] for Practice Exam 2 Untimed Free Response

- 1. You and your lab students are provided one mass (defined as MA), a string / meters in length and a spring with spring constant k.
 - a. Determine other materials you will need to find the periods of a mass/spring system and a pendulum using the materials provided. (2)
 - b. Suppose, using the same mass, students are to construct a mass/spring system and pendulum with identical periods. Assuming no friction in the spring and no air resistance, derive a relationship for the necessary spring constant in terms of M_A, I and g (acceleration due to gravity). (2)
 - c. Based on the relationship derived in part b, the lab group is now instructed to construct a pendulum with an identical period when the mass/spring system utilizes a 10 N/m spring and M_A of 1 kg. How should they construct the pendulum to mimic the period, assuming $g = 10 \text{ m/s}^2$? (2)
 - d. Suppose students are instructed to construct the same 1 meter pendulum so its peak velocity is 2 m/s as it oscillates. How should the students set up the pendulum to ensure that this occurs? Assume no air resistance, and describe any additional materials necessary to ensure accuracy. (6)
- 2. Two blocks of unknown mass m_1 and m_2 are made of the same material. The blocks are attached by a massless spring and sit on a frictionless surface. The spring is released, and each block moves away from the other and slides up a ramp. Block m_1 is observed to slide up the left ramp and reach a height of h_1 . Block m_2 is observed to slide up the right ramp, which is not identical to the left ramp and reaches a height of h_2 .


- a. In terms of the given information and fundamental constants, find the ratio of m_1/m_2 . (4)
- b. The experiment is repeated so that m₁ is secured to the surface and can't move. Compared to the original measured value of h₂, the new value of h₂ will be:

_____ lower _____ higher ____ unchanged. Justify your response. (2)


- c. Suppose a small amount of friction was present between the track and blocks, but was ignored by the experimenters. How would ratio m_1/m_2 found in part a be affected?
 - m_1/m_2 determined in part a is lower than the actual value.
 - m_1/m_2 determined in part a is higher than the actual value.
 - m_1/m_2 determined in part a is unaffected.

Justify your choice. (3)

- d. Two new blocks of mass m_1 = 0.5 kg and m_2 = 3 kg are placed on the frictionless track between the spring. The spring is compressed 0.02 m, and m_1 moves off at 2 m/s. Find the k value of the spring. (3)
- 3. The following figure is a view from above of two balls traveling toward each other on a frictionless surface. They collide in a perfectly inelastic collision and move in the direction shown with velocity, v_3 . m_1 has a mass of 150 g and has a speed of v_1 = 7.0 m/s. The mass of m_2 is 75 g.

- b. Calculate the speed after the collision at v_3 . (2)
- c. How much kinetic energy was lost as a result of the collision? (3)
- 4. A bored individual decides they want to see how well they can catch a grape in their mouth. They buy some seedless grapes from the local store and see that four are identical in shape and size. Each grape has a mass of 5 grams. Assume there is no air resistance where the grape drops will take place.
 - a. Determine the impulse of a grape being released 1 meter above the person's tongue. (2)
 - b. Create a mathematical model that predicts the impulse delivered to the individual's tongue as a function of height, assuming this person wants to catch a grape from heights of 20, 45 and 80 meters from his tongue. Write a paragraph detailing how you approached developing the mathematical model, and describe what the slope and y-intercept mean in the context of this situation. (5)
- 5. A parallel DC circuit is shown in the following image.

- a. Determine the current through each resistor.
- b. Describe two different ways one could increase the current flowing through the first resistor while maintaining the total resistance of the DC parallel circuit.

Finished

AP® and Advanced Placement® are trademarks registered by the College Board, which is not affiliated with, and does not endorse, this website.

FLINN <i>PREP</i> ™	Support	About Us	Flinn Freebies	Digital Resources
♀ P.O. Box 219	Order Support	Company History	Try Free Unit	Online Chemventory TM
Batavia, IL 60510	FAQs	Contact Flinn	Catalogs	Lab Safety Courses
\ 800-452-1261	Update Email	Privacy Policy	Digital Catalogs	UDesign Science Facilities
4 866-452-1436	Preferences Contact Your Account Rep	Careers at Flinn	From the Flinn Lab Newsletter	Planner FlinnSTEM
₩flinn@flinnsci.com		Terms of Service	Lab Design Guide	
			Safety Resources	
			Molarity and Solution Calculators	

Sign up for monthly newsletters and exclusive offers

Enter Email Address

