REMOTE DISTANCE LEARNING

A SCHOOL LEADER'S VIEW PART 2

Online www.flinnsci.com Email flinn@flinnsci.com

Phone 1-800-452-1261

Fax

1-866-452-1436 (toll free)

Mail Flinn Scientific, Inc. P.O. Box 219, Batavia, IL 60510-0219

Leading Education in 2020–Part 2

In part two of our series we continue to examine the important and pivotal role our school leaders play in this current 2020 education climate. We continue to study how the interplay between keeping everyone safe, supporting teachers, and achieving educational goals is a delicate balancing act. Actionable resources and recommendations will be provided.

OVERVIEW OF THIS SESSION

Calming the Chaos

School-Based Logistics

Plan of Action & Next Steps

ABOUT OUR PRESENTER, JACQUELINE MONTEITH:

Jacqueline began teaching high school in Northern Manitoba after graduating from the University of Winnipeg. In 2012, she received her Master's Degree in Distance

Education. In 2013, Jacqueline began her current position as a Science Instructional Coach with Frontier School Division. Her role is to teach and support teachers, and thus our youth, using a variety of methods across a massive geographical area. Jacqueline's 18 years of experience throughout the province, her degree in Distance Education, and her zest for thinking differently has created an ideal leader for 2020.

Jacqueline can also help support your organization, your school and your Division in both Science and Distance Education pedagogy. Please contact her directly to discuss your specific professional development needs at <u>truenorthedmb@gmail.com</u>.

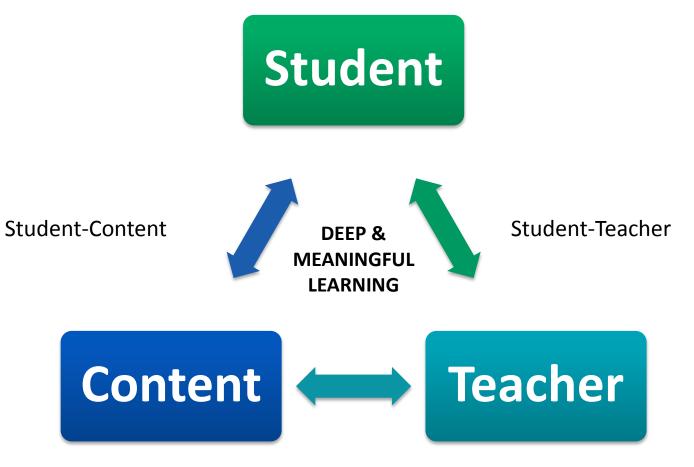
*These materials contain content provided by third parties and are being distributed for your convenience only. We make no representations about the accuracy of these materials and urge you to consult federal, state, and local public health guidelines.

Session 1

✓ Importance of Relationship

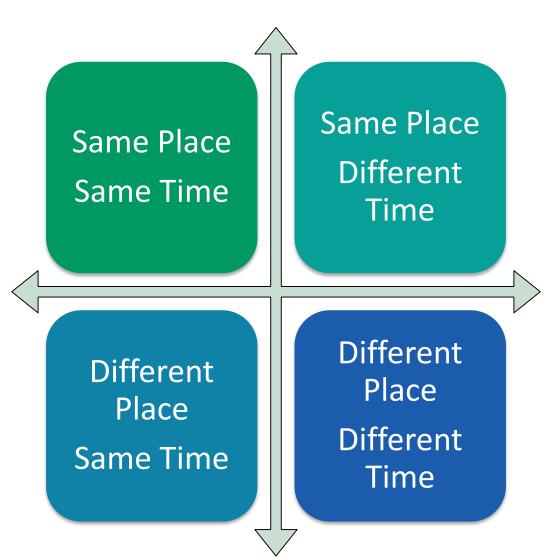
✓ Experiential Teaching & Learning

✓Approaches to Technology


✓ Supporting Teachers

Calming the Chaos

1. TeacherMeme

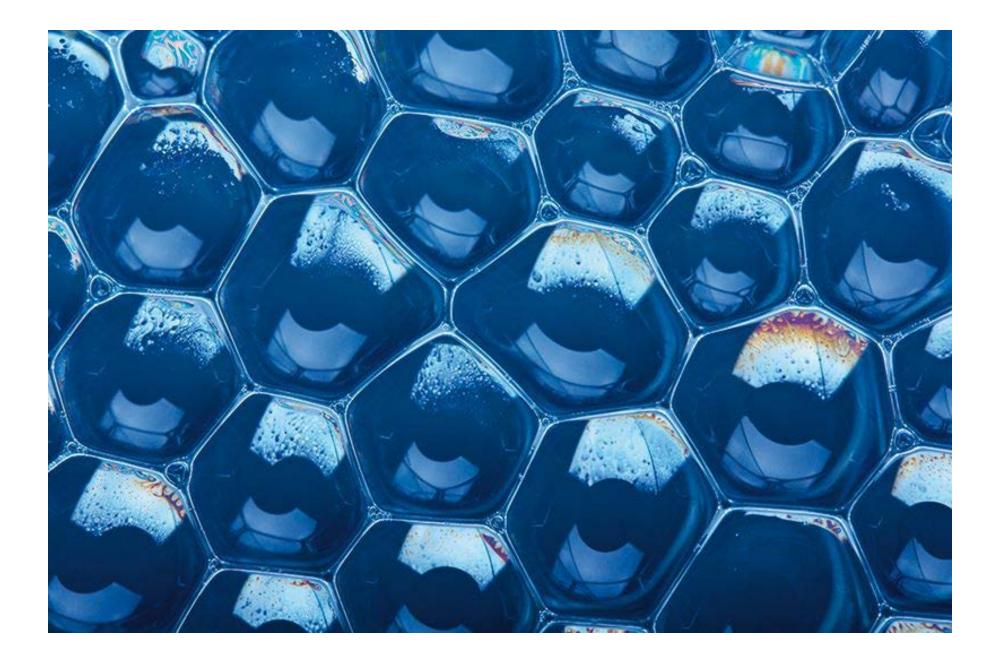

Modes of Interaction

Teacher-Content

1. Anderson & Garrison, 1998

Time & Place Shifting

Importance of Patterns



"

When students seek patterns in the world around them, they see order instead of chaos which builds confidence in their understanding of how the world works and gives them greater control over it.

⊳Barkman, 1998

1	Periodic Table of the Elements											18					
¹ Η																	² He
Hydrogen 1.01	2											13	14	15	16	17	Helium 4.00
Li	⁴Be											⁵Β	۴c	⁷ N	°o	Γ [°] F	¹⁰ Ne
Lithium 6.94	Berylium 9.01											Boron 10.81	Garbon 12.01	Nitrogen 14.01	Oxygen 16.00	Fluorine 19.00	Neon 20.18
¹¹ Na	¹² Mg											¹³ AI	¹⁴ Si	^{¹₅} P	¹⁶ S	¹⁷ CI	¹⁸ Ar
Sodium 22.99	Magnesium 24.31	3	4	5	6	7	8	9	10	11	12	Aluninum 26.98	Silicon 28.09	Phosphorus 30.97	_	Chlorine 35.45	Argon 39.95
19	20	21 5 c	²² Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	28 Ni	²⁹ Cu	30 7 n	Ga	32	33_	³⁴ Se	³⁵ Br	³⁶ Kr
K Potassium 39.10	Ca Cakium 40.08	Sc Scandium 44.96	Titaniun 47.88	V Vanadium 50,94	Chromiun 51.99	Manganese 54,94	Iron 55.85	Cobat 58.93	Nickel 58,69	Cu Gopper 63.55	Zn 2inc 65.38	Gallium 69.72	Gemaniun 72.63	As Arsenic 74.92	Selenium 78.97	DI Bromine 79.90	Krypton 84.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rubidium	Sr Strontium	Y		Nb Nicobium	Molybdenum	TC Technetium	Ru Rutheniun	Rh	Pd Paladium	Ag	Cd Cadmium	Indian	Sn	Sb Antimony	Te Tellurium	lodine	Xe Xenon
85.47 55	87.62	88.91 57-71	91.22 72	92.91 73	95.95 74	98.91 75	101.07 76	77	106.42 78	107.87	112.41 80	81	118.71 82	83	127.6 84	85	131.29 86
Cs Cesium	Barium	Lanthanides	Hf Hafnium	Ta Tantalum	W Tungsten	Re Rhenium	Os Osmiun	lr Iridium	Pt Platinum	Au 60kl	Hg Mercury	TI Thalium	Pb Lead	Bismuth	Po Polonium	At Astatine	Rn Radon
132.91 87_	137.33 88	89-103	178.49	180.95	183.85	186.21 107	190.23 108	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[208.98] 116	209.98	222.02
Fr Francium	Ra Radium	Actinides	Rf Intherfordum	Db Dubnium	Sg Seaborgium	Bh	Hs Hassium	Mt	Ds Darmstadtium	Rg		Nihonium	FI Rerovium	Moscovium	LV Livernarium	TS Termessine	
223.02	226.03		[261]	[262]	[266]	[264]	[269]	[278]	[281]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
		5	-		59 60												1
		L L			haseodymium Ne	odymium P			Europium 🛛 🖲	Gd	Terbium	Dysprosium	Ho Holmium	Er Erbium			Lu Lutetium
		8	99		91 92	9		94 9	5 9	-						102 1	174.97 03
			Ac	Th Thorium F	Pa Protectinium U	U ranium M	Np		Am	Cm	Bk Berkelium	Cf Californium E	Es		Md	No Robelium Li	Lr
		U		232.04			237.05				247.07	251.08			258.10	259.10	[262]
	ſ	Alkali Metal	Alkaline	Earth Tr	ansition Metal	BasicM	etal	Metalloid	Konme	tal	Halogen	Noble G	as La	nthanide	Actinid	•	

0.277 Inti Menerica staronata dig Reflection & Assessment (choose methods)

Social Connections (choose methods)

Connecting literacy, numeracy, science, culture, health, art (choose methods)

Experiential Learning Activity Reflection & Assessment (choose methods)

Social Connections (choose methods)

Connecting literacy, numeracy, science, culture, health, art (choose methods)

Experiential Learning Activity Reflection & Assessment (choose methods)

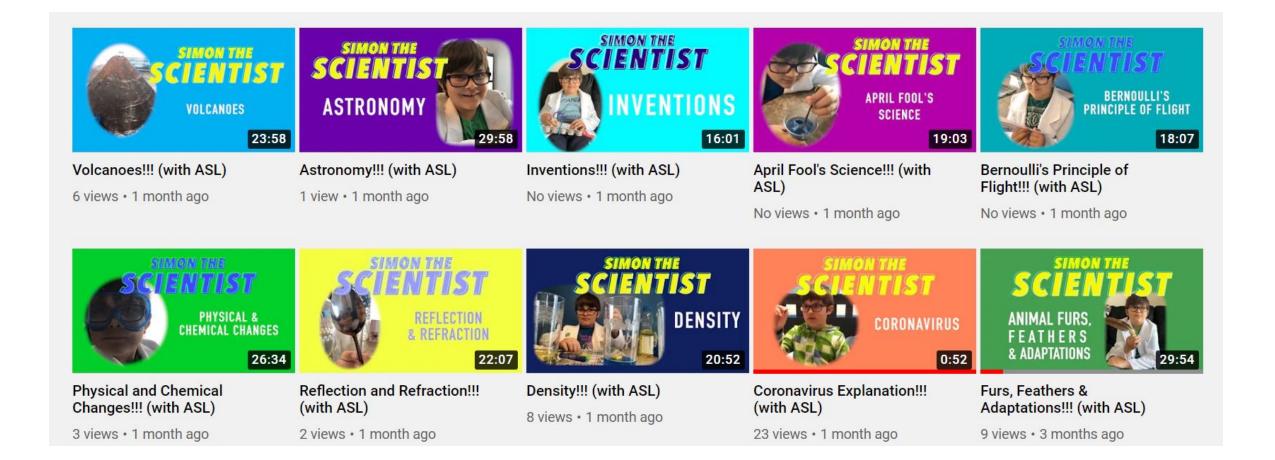
Social Connections (choose methods)

Connecting literacy, numeracy, science, culture, health, art (choose methods)

Experiential Learning Activity Reflection & Assessment (choose methods)

Social Connections (choose methods)

Connecting literacy, numeracy, science, culture, health, art (choose methods)


Experiential Learning Activity

Simon the Scientist

FB: Simon Scientist

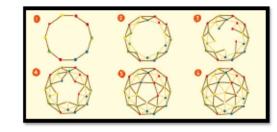
Youtube: Simon the Scientist

Grade 7

Cluster	Ideas						
Interactions within Ecosystems	 Find And Discuss One-Way And Two-Way Relationships Find Evidence Of Complex Change: Sprouting Seed, Cocoon, Etc. Find Evidence Of Simpler Change: Decaying Plant Or Animal Reinforce Needed Vocabulary With Specific Examples In A Natural Setting 						
Particle Theory of Matter	 Observe Allocations Made For Heating/Cooling In The Community: Tar In Sidewalk, Hydro Lines, Docks, Etc. Collect Water Samples From Around The Community (Lake Areas, Pond, Tap, and Rain). Test Boiling Points, Discuss Results Each Student Collects Snow in a Container. At Timed Intervals, Record Temperature. Create A Graph, Compare With Entire Class 						
Forces & Structures	 Visit A Structure In Your Community (Bridge, Dock). Identify How It Is Able To Withstand Natural Forces. Observe Any Effects Of Force Onto The Structure Identify Static, Live, Dead And Dynamic Loads Around The School. Use A Bicycle To Demonstrate Some Concepts Challenge Students to Design a Structure (Tallest Or Strongest) Using Only Natural Objects They Have Collected 						
Earth's Crust	 Collect Rocks and Minerals in the Community. Describe Using Observations On Lustre, Cleavage, Etc. Near A Water Source, Find Evidence Of Erosion Visit A Local Garden. Identify Soil Properties To Make That Garden Successful 						

There's No Place Like Dome science • technology • Engineering • Math

CHALLENGE


Build a geodesic dome.

Materials

- 35 twigs or toothpicks that are 6.5 cm long
- 30 twigs or toothpicks that are 5 cm long
- Play-doh, clay, marshmallows, gumdrops, or other similar binding agent

Method

- Follow the steps in the diagram below.
 - Brown lines in the diagram represent longer sticks
 - Yellow lines in the diagram represent shorter sticks

How it Works

Domes are very strong structures. Domes must be strong enough to withstand pressure from weight, wind, rain, and snow. The triangles in a geodesic dome are very stable. They help distribute any pressure throughout the dome.

Indigi-Tech

First Nations and Inuit have used dome shapes for different types of buildings. The dome was used because it is very strong, and can be built from materials found in nature, like wood or snow. Wood from an ash tree or willow tree can be bent easily to build a wigwam (Ojibway) or mikiwap (Cree) house. Inuit build igloos from snow that is hardpacked and place them in spirals to make the dome shape. Bull boats are an example of an upside-down dome that was used for crossing rivers.

Bio-Links


Spiders make strong and flexible webs with a different network shape: "radial" threads come out from the center, connected with "spiral" threads. This means that even if some threads break, the whole web stays together.

POLL!

Plan Of Action & Next Steps

Teacher Support

Time to transfer from emergency teaching to Distance Ed!

✓One week Distance Ed training and planning

✓One week student and parent training and planning

One Week Distance Ed Training & Support

Whole-school educator conversations

Determining most common denominator with

technology

What can and cannot be done over a distance

One Week Distance Ed Training & Support

- 2-day tech training
- Creation of specific logistics plan
 - Creation of activity packages
- Effective use of school supports:

Educational assistants, bus drivers, and more

Teacher Support

Introduce a new tech option once every 2-3 months

Allot a minimum of two days of training for each technology. YES! Two days!!

Two days will allow teachers to learn the tech AND how it can be useful in personal teaching practices.

Teachers need 2-3 times more planning time than synchronous teaching time

Purposeful planning which focuses on learning relationships Using Maslow's to get to Bloom's Preparing all pre-delivered activity packages Preparing for whole-class teaching time Preparing for small-group & Individual teaching time

Assessment and evaluation from a distance

Learning new technology features to enhance their practice

Outreach to families

Open office hours

One Week Student & Family Support

- Whole-community conversations
- Setting up at-home learning stations
 - Training students on technology
 - Training families on technology
- Helping families to support their learners
 - Detailed school logistics plan

School Plan

Take time to plan and train properly- this will help our teachers, students, and communities immensely!! No more emergency teaching.

Ideally, teachers would have 3-1 planning vs connecting time

Planning properly is incredibly time consuming: activity packages, class time, small group time, individual time

Monday	Tuesday	Wednesday	Thursday	Friday		
Whole Class:	Whole Class:	Whole Class:	Whole Class:	Student Catch Up		
1 hour direct	1 hour direct	1 hour direct	1 hour direct	Materials Exchange		
teaching	teaching	teaching	teaching	Office Hours		
Small Groups &	Small Groups &	Small Groups &	Small Groups &			
Individuals:	Individuals:	Individuals:	Individuals:			
1 hour direct	1 hour direct	1 hour direct	1 hour direct			
teaching	teaching	teaching	teaching			
Students:	Students:	Students:	Students:	Students:		
I hour	I hour	I hour	I hour	I hour		
asynchronous work	asynchronous work	asynchronous work	asynchronous work	asynchronous work		
1 hour experiential family activities	1 hour experiential family activities					

One hour whole-class One hour small groups One hour individual help 2-3 hours prep & additional needs One hour whole-class Up to one hour small groups One hour independent work time One hour family-based experiential activities

Secondary Scheduling Options

Option 1: 1-2 subject blocks of time Option 2: One subject per day (all work can be completed that day)

Maximum 1 hour whole-class teaching Maximum 1 hour small group/individuals Approximately 1 hour independent work time 1 hour family-based experiential activities

Mystery Schedule Considerations

Consider planning from a Distance Ed standpoint for the remainder of this school year

(can transfer to face-to-face much easier)

Consider longer Distance Ed periods of time For example:

Monthly re-entry points after school shut-downs

Teaching face to face and virtually at the same time

Options:

- F2F/Virtual every second day (school-wide)
- Re-organize teachers for one-focus classes
- Create focus time and independent work times within your own class

Summary: Relationship

Maslow Before Bloom Student-Teacher Student-Content Student-Student Student-Self

Direct Connection to Intrinsic Motivation

Summary: Technology

Find the most common denominator

Print & telephone are a viable option

Technology is a tool to achieve learning

objectives

Identify what can and cannot be done through a distance Create a common core experience (Science!) Build learning objectives onto the common core Repeat this pattern

Summary: Patterns

We naturally seek patterns

Patterns help calm the chaos

Experiential Learning becomes the core of your school pattern

Summary: School Plan

Take time to plan and train properly- this will help our teachers, students, and communities immensely!! No more emergency teaching.

Ideally, teachers would have 3-1 planning vs connecting time

Planning properly is incredibly time consuming: activity packages, class time, small group time, individual time

Consider longer short-term Distance Ed periods

Action Plan!

Work as a team to create a logistics plan of action using these guidelines

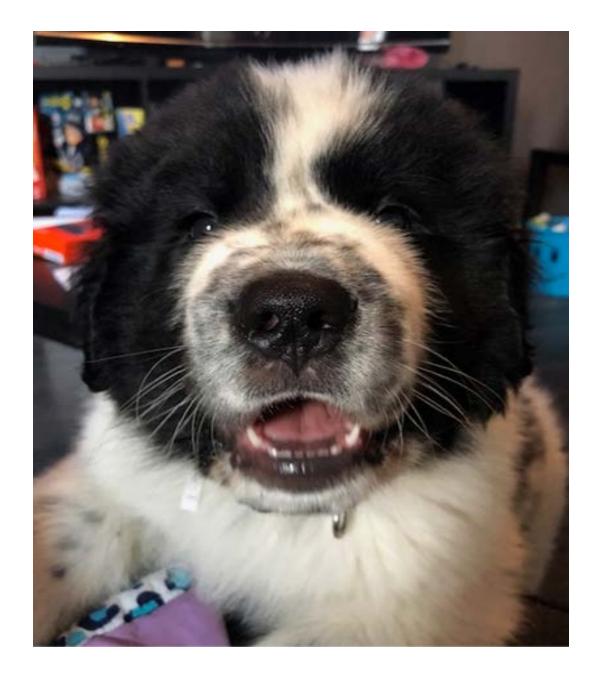
Work with families and community in creating a viable plan

Allow time for teachers to plan and prepare

Allow time to help families plan and prepare

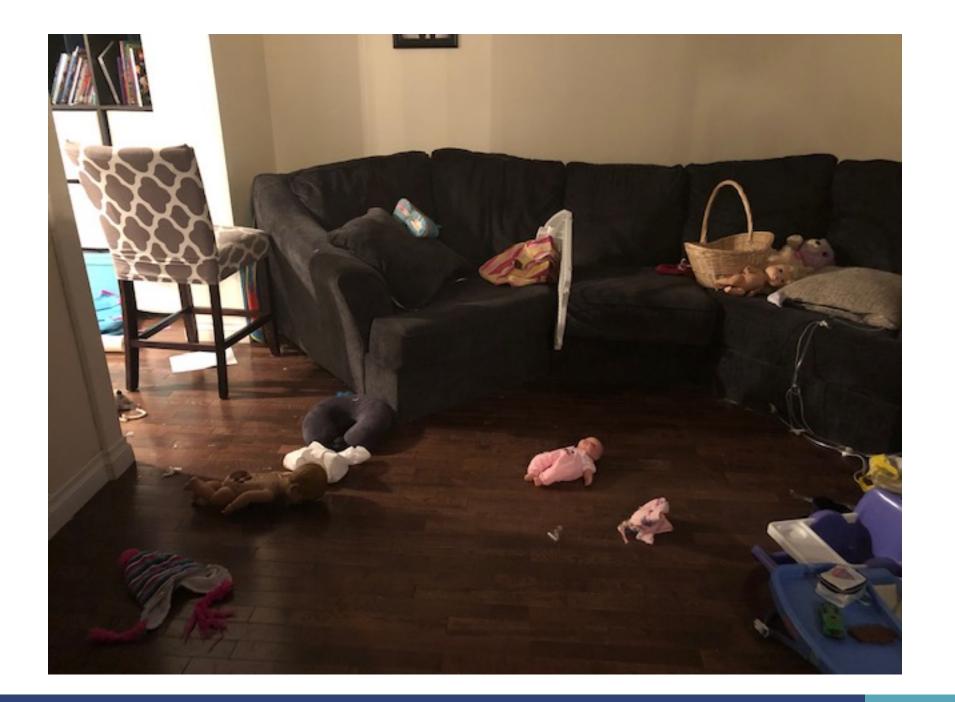
Fast Fail Approach

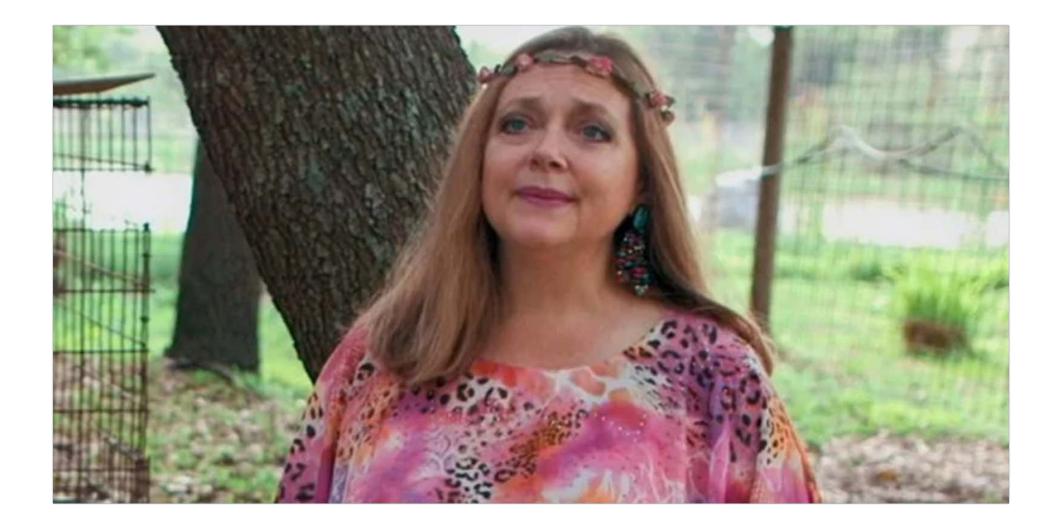
Celebration!



GAME TIME!!!

1 Point	Use of any ONE of Jacq's amazing jokes
2 Points	Become the official tie-breaker in any tie-breaker situation
3 Points	100% of proceeds that teachers donate to this celebration! 100%!!!!


Liz Ard



How much did Bond weigh at 7 months old?

51-60 lbs 61-70 lbs 71-80 lbs 81-90 lbs 91-100 lbs 101-110 lbs 111-120 lbs

Contact Jacqueline

K-12 Science

Distance Education Pedagogy

Distance Education Action Plans

Off-Line Distance Ed

Out of the Box Thinking

Jacqueline.Monteith@fsdnet.ca

truenorthedmb@gmail.com

