

Science2Go is a digital learning solution that offers a new approach to laboratory education for middle and high school students. It allows students to engage in science and engineering practices in any learning environment without access to supplies or equipment. It can be used in-school as prelab work or in classrooms where complete hands-on labs are not possible. Because the lab solutions are online, they are ideal for remote learning. Science2Go combines videos focused on lab techniques and data collection with downloadable, editable worksheets intentionally designed to engage students in science and engineering practices. Students observe and refine experiments, identify design flaws, analyze data, and practice scientific reasoning while connecting science to natural phenomena.

Life Sciences Overview

Life Sciences includes ten labs:

- Tree Rings & Climate
- Seed Genetics
- Building a Kidney Model
- Cellular Diffusion & Osmosis
- Animal Behavior
- Life Cycles
- Carbon Dioxide Emissions & Climate Change
- Artificial Selection
- Ecosystems
- Photosynthesis

The labs are aligned to the NGSS and other state science standards and can be used with any textbook curriculum. Labs can be accessed on any internet-capable device and can be completed in 30-45 minutes.

Tree Rings and Climate

Performance Expectations

MS-LS2-3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science and Engineering Practices

Asking questions and defining problems Planning and carrying out investigations Analyzing and Interpreting Data Constructing Explanations

Crosscutting Concepts

Energy and Matter Stability and Change Cause and effect

Seed Genetics

Performance Expectations

MS-LS3-1: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science and Engineering Practices

Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations Engaging in argument from evidence

Crosscutting Concepts

Cause and Effects Structure and Function

Building a Kidney Model

Performance Expectations

MS-LS4-2: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science and Engineering Practices

Analyzing and Interpreting Data Constructing Explanations

Crosscutting Concepts Patterns Cause and Effect

Flinn Scientific and its affiliates are not responsible for any modifications made by end users to the content posted in its original format.

Cellular Diffusion and Osmosis

Performance Expectations

MS-LS1-2: Develop and use a model to describe the function of the cell as a whole and ways parts of the cells contribute to the function.

Science and Engineering Practices

Asking questions and defining problems Analyzing and interpreting data Using mathematics and computational thinking Developing and using models

Crosscutting Concepts

Cause and effect Systems and system models

Animal Behavior

MS-LS2-2: Construct an explanation that predicts the patterns of interactions among organisms across multiple ecosystems.

Science and Engineering Practices

Analyzing and Interpreting Data Constructing Explanations

Crosscutting Concepts

Patterns Cause and Effect Energy and Matter Stability and Change

Life Cycles

Performance Expectations

MS-LS1-5: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science and Engineering Practices

Analyzing and interpreting data Constructing explanations

Crosscutting concepts

Cause and Effect Scale, Proportion, and Quantity Systems and System Models

Copyright $\ensuremath{\mathbb{C}}$ 2020 Flinn Scientific, Inc. All Rights Reserved.

Flinn Scientific and its affiliates are not responsible for any modifications made by end users to the content posted in its original format.

Carbon Dioxide Emissions and Climate Change

Performance Expectations

MS-LS2-3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science and Engineering Practices

Asking questions and defining problems Planning and carrying out investigations Analyzing and Interpreting Data Constructing Explanations

Crosscutting Concepts

Energy and Matter Stability and Change Cause and effect

Artificial Selection

Performance Expectations

MS-LS3-2: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science and Engineering Practices

Analyzing and interpreting data Engaging in Argument from Evidence Constructing Explanations Developing and Using Models

Crosscutting Concepts

Cause and Effect Structure and Function

Ecosystems

MS-LS2-2: Construct an explanation that predicts the patterns of interactions among organisms across multiple ecosystems.

Science and Engineering Practices

Analyzing and Interpreting Data Constructing Explanations

Crosscutting Concepts Patterns Cause and Effect Stability and Change

Copyright $\ensuremath{\mathbb{C}}$ 2020 Flinn Scientific, Inc. All Rights Reserved.

Flinn Scientific and its affiliates are not responsible for any modifications made by end users to the content posted in its original format.

Photosynthesis

Performance Expectations

MS-LS1-6: Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science and Engineering Practices

Analyzing and Interpreting Data Planning and Carrying Out Investigations Constructing Explanations

Crosscutting Concepts

Structure and Function Energy and Matter

