Your Safer Source for Science

Since 1977

Address P.O. Box 219 Batavia, IL 60510
Phone 800-452-1261
Fax 866-452-1436
In the General, Organic and Biological Chemistry (GOB) Lab Kit: Exploring Equilibrium, explore the nature of chemical equilibrium of two different reversible reactions and practice critical-thinking skills as you build on observations and apply knowledge.

See more product details


(Select option to see volume pricing availability)

Product Details

General, Organic and Biological Chemistry The word equilibrium has two Latin roots: aequi, meaning equal, and libra, meaning weight or balance. Our physical sense of equilibrium—in the motion of a seesaw or the swing of a pendulum—suggests an equal balance of opposing forces. How does this physical sense of equilibrium translate to chemical equilibrium? In this activity, students explore the nature of chemical equilibrium of two different reversible reactions. First, they study the formation of a complex ion and investigate the effects of changing the concentrations of reactants and the reaction temperature. Students then study acid–base equilibrium by observing the color changes of an indicator. Students practice critical-thinking skills as they build on their observations and apply their knowledge to predict whether a reaction is exothermic or endothermic, based on the effect of temperature on the position of equilibrium. Complete for 24 students working in pairs.

Correlation to Next Generation Science Standards (NGSS)

Science & Engineering Practices

Asking questions and defining problems
Developing and using models
Planning and carrying out investigations
Analyzing and interpreting data
Engaging in argument from evidence
Obtaining, evaluation, and communicating information

Disciplinary Core Ideas

MS-PS1.A: Structure and Properties of Matter
MS-PS1.B: Chemical Reactions
HS-PS1.A: Structure and Properties of Matter
HS-PS1.B: Chemical Reactions

Crosscutting Concepts

Cause and effect
Scale, proportion, and quantity
Systems and system models

Performance Expectations

MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures.
MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.