Your Safer Source for Science
All-In-One Science Solution
Your Safer Source for Science
;
Address P.O. Box 219 Batavia, IL 60510
Phone 800-452-1261
Fax
Email [email protected]

Explore Bonding Basics with Graphite Circuits—Blended Learning Solution for Chemistry 1-Year Access

By: The Flinn Staff

Do you ever wish you had more time to spend on labs, that your students could be more independent in their progress through experimental procedures and that labs better connected to the things students experience in their lives? Flinn’s blended learning solution kits for chemistry address these questions by thoughtfully combining hands-on chemistry with digital enhancements.

In this lab, students learn about the amazing properties of graphite—a network covalent solid.

See more product details

Options:

(Select option to see volume pricing availability)

Product Details

Students learn about the amazing properties of graphite—a network covalent solid. A 360° video provides an inside view into the bonding basics of graphite and describes the reasoning behind its ability to conduct electricity. A quick pre-lab homework assignment serves as a refresher for other types of bonding (e.g., ionic, covalent, metallic) Then students head into the lab and create their very own graphite circuit with paper, a #2 pencil and an LED. Successful illumination of the LED completes the lab!

Individual Flinn blended Learning Solution Kits include experiment supplies and 1 year of digital content access to one lab for 30 users. Digital features include: 

  • Anytime, anywhere digital access to prelab, technique and summary videos that help students focus on understanding core chemical concepts and progress through experiments independently.
  • Digital procedures optimized to work, with embedded assessments and real sample data and enough materials for 24–30 students working in small groups to complete each experiment
  • Unique takes on core chemistry concepts and clear connections to the things students experience in their everyday lives.
  • Virtual reality simulations that place students “inside the beaker” to connect the atomic and macroscopic scales and browser-based simulations that allow students to generate digital emission spectra and pH indicator tables. 
  • Built-in safety training—videos and assessments on pre-lab safety, proper PPE, safety equipment, procedure safety, chemical disposal, hazard recognition and emergency response.

Correlation to Next Generation Science Standards (NGSS)

Science & Engineering Practices

Developing and using models
Planning and carrying out investigations
Constructing explanations and designing solutions
Obtaining, evaluation, and communicating information

Disciplinary Core Ideas

HS-PS1.A: Structure and Properties of Matter
HS-PS2.B: Types of Interactions
HS-PS3.A: Definitions of Energy
HS-PS3.C: Relationship between Energy and Forces

Crosscutting Concepts

Patterns
Energy and matter
Stability and change

Performance Expectations

HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.