Your Safer Source for Science

Since 1977

Address P.O. Box 219 Batavia, IL 60510
Phone 800-452-1261
Fax 866-452-1436
Email flinn@flinnsci.com

Properties of Buffer Solutions—Blended Inquiry Lab Solution for AP® Chemistry, 1-Year Access

By: The Flinn Staff

In the Properties of Buffer Solutions Inquiry Lab Solution for AP® Chemistry, students attempt to design an ideal buffer solution effective in a specific pH range and to verify its buffer capacity.

Includes access to exclusive FlinnPREP™ digital content to combine the benefits of classroom, laboratory and digital learning. Each blended learning lab solution includes prelab videos about concepts, techniques and procedures, summary videos that relate the experiment to the AP® exam, built-in student lab safety training with assessments, and standards-based, tested inquiry labs with real sample data. FlinnPREP™ Inquiry Lab Solutions are adaptable to you and how you teach with multiple ways to access and run your AP® labs.

See more product details

Options:

(Select option to see volume pricing availability)

Product Details

Big Idea 6, Investigation 16, Primary Learning Objective 6.18

What are buffers made of? How does a buffer work? Can a buffer be designed to be effective in a given pH range? Is there such a thing as an ideal buffer? The purpose of this advanced-inquiry lab kit is to design a buffer solution that will be effective in a specific pH range and to verify its buffer capacity.

Students begin the investigation with an introductory activity to explore the composition and pH of ideal buffers and compare their pH changes when a strong acid and base are added. Understanding the properties of buffers prepares students for the guided-inquiry challenge—to design a buffer that will provide effective protection at a specific pH and that will have the capacity to maintain the pH within a narrow range when prescribed amounts of acid and base are added.  

Complete for 24 students working in pairs.

Correlation to Next Generation Science Standards (NGSS)

Science & Engineering Practices

Planning and carrying out investigations
Analyzing and interpreting data
Using mathematics and computational thinking
Constructing explanations and designing solutions

Disciplinary Core Ideas

HS-PS1.A: Structure and Properties of Matter
HS-PS1.B: Chemical Reactions

Crosscutting Concepts

Patterns
Cause and effect
Scale, proportion, and quantity

Performance Expectations

HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.