Your Safer Source for Science

Since 1977

Address P.O. Box 219 Batavia, IL 60510
Phone 800-452-1261
Fax 866-452-1436
Email flinn@flinnsci.com
In the Conservation of Energy on an Inclined Plane Inquiry Lab Kit for AP® Physics 1, use critical-thinking and the conservation of energy principle to predict the distance a small steel ball travels when launched.

See more product details

Options:

(Select option to see volume pricing availability)

Product Details

AP Physics 1, Big Idea 5, Investigation 6

When a small steel ball rolls down an inclined plane, its potential energy becomes kinetic. Students use their critical-thinking skills and knowledge of the conservation of energy principle to predict the distance a small steel ball travels when launched from an inclined plane set atop a table. In the introductory activity, students determine how changing the release height, mass of the ball and angle of the inclined plane may affect the launch distance. In the guided-inquiry activity, students apply their initial findings to accurately launch a steel ball a specific distance. Differences between experimental and theoretical launch distances (and horizontal velocities) force students to explain energy gains or losses.

As an additional opportunity for inquiry, students may use photogate timers to more accurately determine launch speeds. Also, students may use the ideas presented in this lab to determine the initial horizontal velocity of other projectiles, such as a rubber band.

Complete for 24 students working in groups of three. Photogate timers are optional and available separately. All materials are reusable.

Correlation to Next Generation Science Standards (NGSS)

Science & Engineering Practices

Planning and carrying out investigations
Analyzing and interpreting data
Using mathematics and computational thinking
Constructing explanations and designing solutions

Disciplinary Core Ideas

HS-PS3.A: Definitions of Energy
HS-PS3.B: Conservation of Energy and Energy Transfer
HS-PS3.C: Relationship between Energy and Forces
HS-ETS1.C: Optimizing the Design Solution

Crosscutting Concepts

Cause and effect
Scale, proportion, and quantity
Energy and matter

Performance Expectations

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).
HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.