Price: $2,418.75
In Stock.
Student access per teacher for one year to a standards-based, web-based virtual modeling STEM application. Students are guided through an engaging, realistic design development process resulting in virtual simulations and competitions with other students throughout their class or district. The software even provides instructions on how to build a dye-sensitized solar cell, allowing students to go one step further by creating actual physical representations of their virtual designs. Includes a fully integrated teacher LMS control center. High school level.
This item can only be shipped to schools, museums and science centers
Using the custom, built-in CAD system of WhiteBox Learning, students develop 3D models in minutes. The simplicity of the modeling process puts focus where it belongs—on learning the critically important science, technology, engineering and math (STEM) concepts that live just below the surface. After designing and analyzing in the web-based design software, student connect the virtual to the physical by building a real solar cell.
The WhiteBox Learning Process Begins with Research! In the research section, students begin by exploring all the theory and concept background they will need to proceed with the activity. This section includes background text with plenty of interactive activities, tools and tutorials to ensure students are well prepared for the remaining sections. Next, students move on to the Design section. Engineers combine scientific concepts and theories with reality using tools to visualize their designs in 3D. In this section, students use the custom, built-in CAD system to create 3D models on screen and quickly choose between a variety of components to improve their designs. Then, in the Analysis section, students work with a number of built-in tools to see how well their designs stand up to the scientific principles explored in the Research section. Creating the models is fun and exciting, but won’t mean much if not supported by science.
Then it’s finally time to compete in the Virtual Competition! In this portion of the activity, students see how their designs measure up against each other. Once students have conquered the virtual world, it’s time to Build and Test the solar cells in the physical world. This section includes instructions and tips to build a Dye-sensitized (DSC) solar cell.
The Benefits of WhiteBox Learning
ISBN: 978-1-933709-91-8
HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).
HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.
HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.
HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.