Your Safer Source for Science

Since 1977

Address <p>P.O. Box 219 Batavia, IL 60510</p>
Phone 800-452-1261
Fax 866-452-1436
Email flinn@flinnsci.com

Item #: AP7275

Price: $26.35

In Stock.

In the Build a Simple AC Generator for physical science and physics, demonstrate the fundamental principles of generators by converting the spinning mechanical energy into electrical energy that will light an LED.

See more product details

Other Options

Item# AP7276 AP7275
Type of Kit Classroom Set Demonstration Kit
Price $135.40 $26.35
Enter number of items

Product Details

Create power! Demonstrate the fundamental principles of generators by converting the spinning mechanical energy into electrical energy that will light an LED. In this simple, easy-to-make device, two powerful neodymium magnets spinning in a coil of wire induce a current, in accord with Faraday’s Law. You can also use the device to show students the difference between direct and alternating current. They will surely be impressed! Includes complete instructions and a reproducible student worksheet. Concepts: Electric generators, electromagnetism, alternating current, Faraday's law. Time Required: 15 minutes Materials Provided: Cardboard tube, iron nail, red LED, magnet wire, neodymium magnets, sandpaper. Note: Also available as a Classroom Set with enough materials for eight student groups.

Specifications

Materials Included in Kit: 
Cardboard tube, 2⅞" length x 1½" diameter
Iron nails, 3" long
LED, clear, red, 2
Magnet wire, 30-gauge, 200 feet
Neodymium magnet, ½" x ⅜", 2
Sandpaper sheet, 9" x 11"


Correlation to Next Generation Science Standards (NGSS)

Science & Engineering Practices

Asking questions and defining problems
Developing and using models
Analyzing and interpreting data
Engaging in argument from evidence

Disciplinary Core Ideas

MS-PS2.B: Types of Interactions
MS-ETS1.A: Defining and Delimiting Engineering Problems
HS-PS1.A: Structure and Properties of Matter
HS-PS3.C: Relationship between Energy and Forces

Crosscutting Concepts

Cause and effect
Systems and system models
Energy and matter

Performance Expectations

MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).